home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Skunkware 5
/
Skunkware 5.iso
/
src
/
Tools
/
mpeg_stat-2.2
/
video.c
< prev
next >
Wrap
C/C++ Source or Header
|
1995-05-10
|
100KB
|
3,574 lines
/* MPEGSTAT - analyzing tool for MPEG-I video streams
*
* Technical University of Berlin, Germany, Dept. of Computer Science
* Tom Pfeifer - Multimedia systems project - pfeifer@fokus.gmd.de
*
* Jens Brettin, Harald Masche, Alexander Schulze, Dirk Schubert
*
* This program uses parts of the source code of the Berkeley MPEG player
*
* ---------------------------
*
* Copyright (c) 1993 Technical University of Berlin, Germany
*
* for the parts of the Berkeley player used:
*
* Copyright (c) 1992 The Regents of the University of California.
* All rights reserved.
*
* ---------------------------
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notices and the following
* two paragraphs appear in all copies of this software.
*
* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA
* or the Technical University of Berlin BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA or the Technical University of Berlin HAS BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* THE UNIVERSITY OF CALIFORNIA and the Technical University of Berlin
* SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE
* UNIVERSITY OF CALIFORNIA and the Technical University of Berlin HAVE NO
* OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
* OR MODIFICATIONS.
*/
/*
* This file contains C code that implements
* the video decoder model.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#ifndef MIPS
#include <sys/time.h>
#else
#include <sys/types.h>
#include <sys/system.h>
#endif
#include "decoders.h"
#include "video.h"
#include "util.h"
#include "proto.h"
#include "dither.h"
#include "opts.h"
/* Declarations of functions. */
static int ReconIMBlock();
static void ReconPMBlock();
static void ReconBMBlock();
static void ReconBiMBlock();
static void ReconSkippedBlock();
static void DoPictureDisplay();
static int ParseSeqHead();
static int ParseGOP();
static void PrintGOP();
static int ParsePicture();
static int ParseSlice();
static int ParseMacroBlock();
static void ProcessSkippedPFrameMBlocks();
static void ProcessSkippedBFrameMBlocks();
/* Macro for returning 1 if num is positive, -1 if negative, 0 if 0. */
#define Sign(num) ((num > 0) ? 1 : ((num == 0) ? 0 : -1))
/* CONSTANTS */
/* Set up array for fast conversion from zig zag order to row/column
coordinates.
*/
const int zigzag[64][2] = {
0, 0, 1, 0, 0, 1, 0, 2, 1, 1, 2, 0, 3, 0, 2, 1, 1, 2, 0, 3, 0, 4, 1, 3,
2, 2, 3, 1, 4, 0, 5, 0, 4, 1, 3, 2, 2, 3, 1, 4, 0, 5, 0, 6, 1, 5, 2, 4,
3, 3, 4, 2, 5, 1, 6, 0, 7, 0, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0, 7,
1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6,
2, 7, 3, 7, 4, 6, 5, 5, 6, 4, 7, 3, 7, 4, 6, 5, 5, 6, 4, 7, 5, 7, 6, 6,
7, 5, 7, 6, 6, 7, 7, 7};
/* Array mapping zigzag to array pointer offset. */
const int zigzag_direct[64] = {
0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12,
19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35,
42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63};
/* Set up array for fast conversion from row/column coordinates to
zig zag order.
*/
const int scan[8][8] = {
{0, 1, 5, 6, 14, 15, 27, 28},
{2, 4, 7, 13, 16, 26, 29, 42},
{3, 8, 12, 17, 25, 30, 41, 43},
{9, 11, 18, 24, 31, 40, 44, 53},
{10, 19, 23, 32, 39, 45, 52, 54},
{20, 22, 33, 38, 46, 51, 55, 60},
{21, 34, 37, 47, 50, 56, 59, 61},
{35, 36, 48, 49, 57, 58, 62, 63}};
const char *VidRate[16]={"forbidden","23.976 frames/sec","24 frames/sec","25 frames/sec",
"29.97 frames/sec","30 frames/sec","50 frames/sec","59.94 frames/sec","60 frames/sec",
"reserved","reserved","reserved","reserved","reserved","reserved","reserved"};
const double VidRateNum[16]={1.0, 23.976, 24.0, 25.0, 29.97, 30.0, 50.0 ,59.94, 60.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
const char *PelRatio[16]={"forbidden","1 (VGA)","0.6735","0.7031 (16:9 625 lines)",
"0.7615","0.8055","0.8437 (16:9 525 lines)","0.8935","0.9375 (CCIR 601, 625 lines)",
"0.9815","1.0255","1.0695","1.1250 (CCIR 601, 525 lines)","1.1575","1.2015","reserved"};
/*
* We use a lookup table to make sure values stay in the 0..255 range.
* Since this is cropping (ie, x = (x < 0)?0:(x>255)?255:x; ), wee call this
* table the "crop table".
* MAX_NEG_CROP is the maximum neg/pos value we can handle.
*/
#define MAX_NEG_CROP 384
#define NUM_CROP_ENTRIES (256+2*MAX_NEG_CROP)
static unsigned char cropTbl[NUM_CROP_ENTRIES];
extern int ditherType;
char *ditherFlags;
/* Declare global pointer to vid stream used for current decoding. */
VidStream *curVidStream = NULL;
/* Max lum, chrom indices for illegal block checking. */
static int lmaxx;
static int lmaxy;
static int cmaxx;
static int cmaxy;
/* Error Handling Code */
char *errorLocation;
char *errorSpecifics;
/* DCT printing code */
char *dctSpecifics;
/* Boolean to keep track whether f_codes are within constrained params. */
BOOLEAN f_code_ok=TRUE;
/* Statistics Decls */
unsigned int bitCount = 0;
unsigned int pictureSizeCount;
unsigned int mbSizeCount;
unsigned int *mbCBPPtr, *mbCoeffPtr, *mbSizePtr;
Statval stat_a[4];
/* Rate Measuring values */
int rate_vals[60],rate_ptr=0,rate_sum=0,rate_started=0;
int rate_disp,rate_init=FALSE,rate_max=0,rate_min=0xFFFFFFF;
/* Keep track of block (Statistics) information */
BlockVals blks;
double realTimeStart;
int totNumFrames = 0;
/*
*--------------------------------------------------------------
*
* NewVidStream --
*
* Allocates and initializes a VidStream structure. Takes
* as parameter requested size for buffer length.
*
* Results:
* A pointer to the new VidStream structure.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
VidStream *
NewVidStream(bufLength)
int bufLength;
{
int i, j;
VidStream *new;
static unsigned char default_intra_matrix[64] = {
8, 16, 19, 22, 26, 27, 29, 34,
16, 16, 22, 24, 27, 29, 34, 37,
19, 22, 26, 27, 29, 34, 34, 38,
22, 22, 26, 27, 29, 34, 37, 40,
22, 26, 27, 29, 32, 35, 40, 48,
26, 27, 29, 32, 35, 40, 48, 58,
26, 27, 29, 34, 38, 46, 56, 69,
27, 29, 35, 38, 46, 56, 69, 83};
/* Check for legal buffer length. */
if (bufLength < 4)
return NULL;
/* Make buffer length multiple of 4. */
bufLength = (bufLength + 3) >> 2;
/* Allocate memory for new structure. */
new = (VidStream *) malloc(sizeof(VidStream));
if (new == NULL)
return NULL;
/* Initialize pointers to extension and user data. */
new->group.ext_data = new->group.user_data =
new->picture.extra_info = new->picture.user_data =
new->picture.ext_data = new->slice.extra_info =
new->ext_data = new->user_data = NULL;
/* Initialize stuff for GOP checking and display */
new->group.code_types = (char *) malloc(MAX_CODE_TYPES);
if (new->group.code_types == NULL)
return NULL;
new->group.max_code_types = MAX_CODE_TYPES;
new->group.picture_count = 0;
/* Copy default intra matrix. */
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
new->intra_quant_matrix[j][i] = default_intra_matrix[i * 8 + j];
}
}
/* Initialize crop table. */
for (i = (-MAX_NEG_CROP); i < NUM_CROP_ENTRIES - MAX_NEG_CROP; i++) {
if (i <= 0) {
cropTbl[i + MAX_NEG_CROP] = 0;
} else if (i >= 255) {
cropTbl[i + MAX_NEG_CROP] = 255;
} else {
cropTbl[i + MAX_NEG_CROP] = i;
}
}
/* Initialize non intra quantization matrix. */
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
new->non_intra_quant_matrix[j][i] = 16;
}
}
/* Initialize pointers to image spaces. */
new->current = new->past = new->future = NULL;
for (i = 0; i < RING_BUF_SIZE; i++) {
new->ring[i] = NULL;
}
/* Create buffer. */
new->buf_start = (unsigned int *) malloc(bufLength * 4);
if (new->buf_start == NULL)
return NULL;
/*
* Set max_buf_length to one less than actual length to deal with messy
* data without proper seq. end codes.
*/
new->max_buf_length = bufLength - 1;
/* Initialize bitstream i/o fields. */
new->bit_offset = 0;
new->buf_length = 0;
new->buffer = new->buf_start;
/* Return structure. */
return new;
}
/*
*--------------------------------------------------------------
*
* DestroyVidStream --
*
* Deallocates a VidStream structure.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
DestroyVidStream(astream)
VidStream *astream;
{
int i;
if (astream->ext_data != NULL)
free(astream->ext_data);
if (astream->user_data != NULL)
free(astream->user_data);
if (astream->group.ext_data != NULL)
free(astream->group.ext_data);
if (astream->group.user_data != NULL)
free(astream->group.user_data);
if (astream->picture.extra_info != NULL)
free(astream->picture.extra_info);
if (astream->picture.ext_data != NULL)
free(astream->picture.ext_data);
if (astream->picture.user_data != NULL)
free(astream->picture.user_data);
if (astream->slice.extra_info != NULL)
free(astream->slice.extra_info);
if (astream->buf_start != NULL)
free(astream->buf_start);
for (i = 0; i < RING_BUF_SIZE; i++) {
if (astream->ring[i] != NULL) {
DestroyPictImage(astream->ring[i]);
astream->ring[i] = NULL;
}
}
free((char *) astream);
}
/*
*--------------------------------------------------------------
*
* NewPictImage --
*
* Allocates and initializes a PictImage structure.
* The width and height of the image space are passed in
* as parameters.
*
* Results:
* A pointer to the new PictImage structure.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
PictImage *
NewPictImage(width, height)
unsigned int width, height;
{
PictImage *new;
/* Allocate memory space for new structure. */
new = (PictImage *) malloc(sizeof(PictImage));
/* Allocate memory for image spaces. */
new->display = (unsigned char *) malloc(width * height);
new->luminance = (unsigned char *) malloc(width * height);
new->Cr = (unsigned char *) malloc(width * height / 4);
new->Cb = (unsigned char *) malloc(width * height / 4);
/* Reset locked flag. */
new->locked = 0;
/* Return pointer to new structure. */
return new;
}
/*
*--------------------------------------------------------------
*
* DestroyPictImage --
*
* Deallocates a PictImage structure.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
DestroyPictImage(apictimage)
PictImage *apictimage;
{
if (apictimage->luminance != NULL) {
free(apictimage->luminance);
}
if (apictimage->Cr != NULL) {
free(apictimage->Cr);
}
if (apictimage->Cb != NULL) {
free(apictimage->Cb);
}
if (apictimage->display != NULL) {
free(apictimage->display);
}
free(apictimage);
}
/*
*--------------------------------------------------------------
*
* mpegVidRsrc --
*
* Parses bit stream until MB_QUANTUM number of
* macroblocks have been decoded or current slice or
* picture ends, whichever comes first. If the start
* of a frame is encountered, the frame is time stamped
* with the value passed in time_stamp. If the value
* passed in buffer is not null, the video stream buffer
* is set to buffer and the length of the buffer is
* expected in value passed in through length. The current
* video stream is set to vid_stream. If vid_stream
* is passed as NULL, a new VidStream structure is created
* and initialized and used as the current video stream.
*
* Results:
* A pointer to the video stream structure used.
*
* Side effects:
* Bit stream is irreversibly parsed. If a picture is completed,
* a function is called to display the frame at the correct time.
*
*--------------------------------------------------------------
*/
VidStream *
mpegVidRsrc(time_stamp, vid_stream)
TimeStamp time_stamp;
VidStream *vid_stream;
{
unsigned int data;
int i, status;
/* Setup error specifics */
errorSpecifics=malloc(100);
*errorSpecifics='\0';
dctSpecifics=malloc(4000);
*dctSpecifics='\0';
/* If vid_stream is null, create new VidStream structure. */
if (vid_stream == NULL) {
return NULL;
}
/*
* Set global curVidStream to vid_stream. Necessary because bit i/o use
* curVidStream and are not passed vid_stream. Also set global bitstream
* parameters.
*/
curVidStream = vid_stream;
bitOffset = curVidStream->bit_offset;
#ifdef UTIL2
curBits = *curVidStream->buffer << bitOffset;
#else
curBits = *curVidStream->buffer;
#endif
bufLength = curVidStream->buf_length;
bitBuffer = curVidStream->buffer;
next_start_code();
show_bits32(data);
if (data != SEQ_START_CODE) {
fprintf(stderr, "This is not an MPEG stream.\n");
DestroyVidStream(curVidStream);
exit(1);
}
/*
* Process according to start code (or parse macroblock if not a start code
* at all.
*/
while (1) {
start:
show_bits32(data);
switch (data) {
case SEQ_END_CODE:
case 0x000001b9: /* handle ISO_11172_END_CODE too */
/* Print last gop. */
PrintGOP(vid_stream);
/* Display last frame. */
if (vid_stream->future != NULL) {
vid_stream->current = vid_stream->future;
}
/* Sequence done. Do the right thing. For right now, exit. */
PrintAllStats();
PrintTimeInfo();
DestroyVidStream(curVidStream);
exit(0);
break;
case SEQ_START_CODE:
/* Sequence start code. Parse sequence header. */
if (opts&COLLECTING&OFFS_INFO) {
fprintf(offs_fp,"sequence %d\n",bitCountRead());
}
if (ParseSeqHead(vid_stream) != PARSE_OK) {
errorLocation="Sequence Header";
goto error;
}
/*
* Return after sequence start code so that application above can use
* info in header.
*/
break;
case GOP_START_CODE:
/* Group of Pictures start code.*/
/* Print previous gop. (For the first GOP, the function does nothing.) */
PrintGOP(vid_stream);
if (opts&COLLECTING&OFFS_INFO) {
fprintf(offs_fp,"gop %d\n",bitCountRead());
}
/* Parse GOP Header */
if (ParseGOP(vid_stream) != PARSE_OK) {
errorLocation="Group of Pictures";
goto error;
}
break;
case PICTURE_START_CODE:
/* Picture start code. Parse picture header and first slice header. */
status = ParsePicture(vid_stream, time_stamp);
if (status == SKIP_PICTURE) {
next_start_code();
while (!next_bits(32, PICTURE_START_CODE)) {
if (next_bits(32, GOP_START_CODE))
break;
else if (next_bits(32, SEQ_END_CODE))
break;
flush_bits(24);
next_start_code();
}
break;
} else if (status != PARSE_OK) {
errorLocation="Picture";
goto error;
}
if (ParseSlice(vid_stream) != PARSE_OK) {
errorLocation="Slice (1)";
goto error;
}
break;
default:
/* Check for slice start code. */
if ((data >= SLICE_MIN_START_CODE) && (data <= SLICE_MAX_START_CODE)) {
/* Slice start code. Parse slice header. */
if (ParseSlice(vid_stream) != PARSE_OK) {
errorLocation="Slice (2)";
goto error;
}
} else {
if ((unsigned int) (data & 0xfffffe00)== (unsigned int )0) {
/* Wasn't any valid start code for MPEG-1 video streams */
fprintf(stderr,"Invalid start code, perhaps MPEG-2 file?\n");
exit(1);
}
}
/* Parse until next bits are start code */
do {
if (ParseMacroBlock(vid_stream) != PARSE_OK) {
errorLocation="Macro block";
goto error;
}
} while (!next_bits(23, 0x00000000));
next_start_code();
show_bits32(data);
/*
* If start code is outside range of slice start codes, frame is
* complete, display frame.
*/
if ((data < SLICE_MIN_START_CODE) || (data > SLICE_MAX_START_CODE)) {
EndTime();
stat_a[0].totsize += bitCountRead() - pictureSizeCount;
if (opts&SIZE_INFO&COLLECTING) {
fprintf(size_fp,"%d\t%c\t%8d\n",
blks.frame,"0IPB"[stat_a[0].frametype],stat_a[0].totsize);
}
if (COLLECTING&opts&RATE_INFO) {
rate_sum-=rate_vals[rate_ptr];
rate_vals[rate_ptr]=stat_a[0].totsize;
rate_sum+=stat_a[0].totsize;
if (rate_started) fprintf(rate_fp,"%d\n",rate_sum);
else if (rate_ptr==(rate_disp-1)) rate_started=TRUE;
if (rate_sum>rate_max) rate_max=rate_sum;
if (rate_sum<rate_min) rate_min=rate_sum;
rate_ptr= (rate_ptr+1)%rate_disp;
}
if (COLLECTING) CollectStats();
DoPictureDisplay(vid_stream);
}
}
}
error:
/* "calling" routine must set errorLocation, errorSpecifics may be set */
fprintf(stderr, "Error!!!! while parsing %s in frame %d, skipping to start code. %s\n",
errorLocation,blks.frame,errorSpecifics);
sprintf(errorSpecifics,"");
next_start_code();
goto start;
}
/*
*--------------------------------------------------------------
*
* ParseSeqHead --
*
* Assumes bit stream is at the begining of the sequence
* header start code. Parses off the sequence header.
*
* Results:
* Fills the vid_stream structure with values derived and
* decoded from the sequence header. Allocates the pict image
* structures based on the dimensions of the image space
* found in the sequence header.
*
* Side effects:
* Bit stream irreversibly parsed off.
*
*--------------------------------------------------------------
*/
static int
ParseSeqHead(vid_stream)
VidStream *vid_stream;
{
unsigned int data;
int i;
/* Flush off sequence start code. */
flush_bits32;
/* Get horizontal size of image space. */
get_bits12(data);
vid_stream->h_size = data;
/* Get vertical size of image space. */
get_bits12(data);
vid_stream->v_size = data;
/* Calculate macroblock width and height of image space. */
vid_stream->mb_width = (vid_stream->h_size + 15) / 16;
vid_stream->mb_height = (vid_stream->v_size + 15) / 16;
/* If dither type is MBORDERED allocate ditherFlags. */
if (ditherType == MBORDERED_DITHER) {
ditherFlags = (char *) malloc(vid_stream->mb_width*vid_stream->mb_height);
}
/* Initialize lmaxx, lmaxy, cmaxx, cmaxy. */
lmaxx = vid_stream->mb_width*16-8;
lmaxy = vid_stream->mb_height*16-8;
cmaxx = vid_stream->mb_width*8-8;
cmaxy = vid_stream->mb_height*8-8;
/*
* Initialize ring buffer of pict images now that dimensions of image space
* are known.
*/
if (vid_stream->ring[0] == NULL) {
for (i = 0; i < RING_BUF_SIZE; i++) {
vid_stream->ring[i] = NewPictImage(vid_stream->mb_width * 16,
vid_stream->mb_height * 16);
}
}
/* Parse of aspect ratio code. */
get_bits4(data);
vid_stream->aspect_ratio = (unsigned char) data;
/* Parse off picture rate code. */
get_bits4(data);
vid_stream->picture_rate = (unsigned char) data;
vid_stream->orig_picture_rate = (unsigned char) data;
if (VidRateNum[data] == 1.0) {
fprintf(stderr,
"Picture rate is invalid! It is listed in Std as %s (code is %d)\n",
VidRate[data],data);
fprintf(stderr,
"Any average dependent on the picture rate will be incorrect\n");
fprintf(stderr,"\t(assumed to mean 30fps). Probably a Xing sequence.\n\n");
vid_stream->picture_rate=5;
}
if (opts&RATE_INFO) {
/* Setup data rate collection structures */
if (!rate_init) {
if (opts&RATE_LENGTH_SET)
rate_disp=rate_frames;
else rate_disp=(int)(VidRateNum[data]+0.5);
rate_ptr=0; rate_started=FALSE; rate_init=TRUE;
for(i=0; i<rate_disp;i++) rate_vals[i]=0;
rate_sum=0;
} else if ((int)(VidRateNum[data]+0.5)!=rate_disp) {
fprintf(rate_fp,"CHANGE in picture rate from %d to %d\n",
(int)(VidRateNum[data]+0.5),rate_disp);
}
}
/* Parse off bit rate. */
get_bits18(data);
vid_stream->bit_rate = data;
/* Flush marker bit. */
flush_bits(1);
/* Parse off vbv buffer size. */
get_bits10(data);
vid_stream->vbv_buffer_size = data;
if (data*1024>vid_stream->max_buf_length) {
unsigned int *newbuf;
int sz=1024*data+1;
/* If they actually want a bigger buffer than we default to,
let them have it! (if we can) */
newbuf = (unsigned int *) realloc((char *)vid_stream->buf_start,4*sz);
if (newbuf!=(unsigned int *)NULL) {
vid_stream->max_buf_length=sz;
bitBuffer=(bitBuffer-vid_stream->buf_start)+newbuf;
vid_stream->buf_start=newbuf;
}}
/* Parse off constrained parameter flag. */
get_bits1(data);
if (data) {
vid_stream->const_param_flag = TRUE;
} else
vid_stream->const_param_flag = FALSE;
/*
* If intra_quant_matrix_flag set, parse off intra quant matrix values.
*/
get_bits1(data);
if (data) {
int new_table=FALSE;
for (i = 0; i < 64; i++) {
get_bits8(data);
new_table = new_table ||
(vid_stream->intra_quant_matrix[zigzag[i][1]][zigzag[i][0]] !=
(unsigned char) data);
vid_stream->intra_quant_matrix[zigzag[i][1]][zigzag[i][0]] =
(unsigned char) data;
}
if (opts&QSCALE_INFO) {
PrintQT(qscale_fp,"IQ",new_table,(unsigned char *)vid_stream->intra_quant_matrix);
}
if ((opts&LOUD) || new_table) {
PrintQT(stdout,"IQ",new_table,(unsigned char *)vid_stream->intra_quant_matrix);
}
}
/*
* If non intra quant matrix flag set, parse off non intra quant matrix
* values.
*/
get_bits1(data);
if (data) {
int new_table=FALSE;
for (i = 0; i < 64; i++) {
get_bits8(data);
new_table = new_table ||
(vid_stream->non_intra_quant_matrix[zigzag[i][1]][zigzag[i][0]] !=
(unsigned char) data);
vid_stream->non_intra_quant_matrix[zigzag[i][1]][zigzag[i][0]] =
(unsigned char) data;
}
if (opts&QSCALE_INFO) {
PrintQT(qscale_fp,"NIQ",new_table,(unsigned char *)vid_stream->non_intra_quant_matrix);
}
if ((opts&LOUD) || new_table) {
PrintQT(stdout,"NIQ",new_table,(unsigned char *)vid_stream->non_intra_quant_matrix);
}
}
next_start_code();
/*
* If next start code is extension start code, parse off extension data.
*/
if (next_bits(32, EXT_START_CODE)) {
int sz;
flush_bits32;
if (vid_stream->ext_data != NULL) {
free(vid_stream->ext_data);
vid_stream->ext_data = NULL;
}
vid_stream->ext_data = get_ext_data(&sz);
vid_stream->ext_size = sz;
}
/* If next start code is user start code, parse off user data. */
if (next_bits(32, USER_START_CODE)) {
int sz;
flush_bits32;
if (vid_stream->user_data != NULL) {
free(vid_stream->user_data);
vid_stream->user_data = NULL;
}
vid_stream->user_data = get_ext_data(&sz);
vid_stream->user_size = sz;
if (sz > 0 && opts&COLLECTING&USERDAT_INFO) {
fprintf(userdat_fp, "Sequence Header user data:\n");
print_binary(userdat_fp, vid_stream->user_data, vid_stream->user_size);
}
}
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* ParseGOP --
*
* Parses of group of pictures header from bit stream
* associated with vid_stream.
*
* Results:
* Values in gop header placed into video stream structure.
*
* Side effects:
* Bit stream irreversibly parsed.
*
*--------------------------------------------------------------
*/
static int
ParseGOP(vid_stream)
VidStream *vid_stream;
{
unsigned int data;
/* Reset stuff for GOP checking */
vid_stream->group.picture_count = 0;
memset(vid_stream->group.code_types, 0, vid_stream->group.max_code_types);
/* Flush group of pictures start code. WWWWWWOOOOOOOSSSSSSHHHHH!!! */
flush_bits32;
/* Parse off drop frame flag. */
get_bits1(data);
if (data) {
vid_stream->group.drop_flag = TRUE;
} else
vid_stream->group.drop_flag = FALSE;
/* Parse off hour component of time code. */
get_bits5(data);
vid_stream->group.tc_hours = data;
/* Parse off minute component of time code. */
get_bits6(data);
vid_stream->group.tc_minutes = data;
/* Flush marker bit. */
flush_bits(1);
/* Parse off second component of time code. */
get_bits6(data);
vid_stream->group.tc_seconds = data;
/* Parse off picture count component of time code. */
get_bits6(data);
vid_stream->group.tc_pictures = data;
/* Parse off closed gop and broken link flags. */
get_bits2(data);
if (data > 1) {
vid_stream->group.closed_gop = TRUE;
if (data > 2) {
vid_stream->group.broken_link = TRUE;
} else
vid_stream->group.broken_link = FALSE;
} else {
vid_stream->group.closed_gop = FALSE;
if (data) {
vid_stream->group.broken_link = TRUE;
} else
vid_stream->group.broken_link = FALSE;
}
if (opts&COLLECTING&BLOCK_INFO) {
fprintf(block_fp,"gop %c %c\n",
vid_stream->group.closed_gop ? 'C' : 'O',
vid_stream->group.broken_link ? 'B': 'W');
}
/* Goto next start code. */
next_start_code();
/* If next start code is extension data, parse off extension data. */
if (next_bits(32, EXT_START_CODE)) {
flush_bits32;
if (vid_stream->group.ext_data != NULL) {
free(vid_stream->group.ext_data);
vid_stream->group.ext_data = NULL;
}
vid_stream->group.ext_data = get_ext_data(&vid_stream->group.ext_size);
}
/* If next start code is user data, parse off user data. */
if (next_bits(32, USER_START_CODE)) {
flush_bits32;
if (vid_stream->group.user_data != NULL) {
free(vid_stream->group.user_data);
vid_stream->group.user_data = NULL;
}
vid_stream->group.user_data = get_ext_data(&vid_stream->group.user_size);
if ( vid_stream->group.user_size > 0 && opts&COLLECTING&USERDAT_INFO) {
fprintf(userdat_fp, "GOP Header user data:\n");
print_binary(userdat_fp, vid_stream->user_data, vid_stream->user_size);
}
}
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* PrintGOP --
*
* Prints picture_coding_types for a group of pictures with some
* limited error checking on the temporal references.
*
* Results:
* Printed to stdout.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
static void
PrintGOP(vid_stream)
VidStream *vid_stream;
{
int i, c, do_print;
/* If this is the first GOP, do nothing. (Empty GOPs will go undetected.) */
if (vid_stream->group.picture_count == 0) return;
do_print = opts & COLLECTING & LOUD;
if (do_print) printf(" / ");
for (i = 0; i < vid_stream->group.picture_count; i++) {
/* Guard against accessing beyond end of code_types[] */
if (i == vid_stream->group.max_code_types) break;
switch (vid_stream->group.code_types[i]) {
case I_TYPE:
c = 'I';
break;
case P_TYPE:
c = 'P';
break;
case B_TYPE:
c = 'B';
break;
case D_TYPE:
c = 'D';
break;
case SKIP_P_TYPE:
case SKIP_B_TYPE:
c = '-';
break;
case 0:
/* The output will be ugly if there is an error. */
fprintf(stderr, "\nError: temporal_reference %d missing from GOP\n", i);
/* no break */
default:
c = '?';
break;
}
if (do_print) printf("%c", c);
}
if (do_print) printf("\n");
/* check for Property 2 in D.5.2 of 11172-2 */
switch (vid_stream->group.code_types[0]) {
case I_TYPE:
case B_TYPE:
case SKIP_B_TYPE:
break;
default:
fprintf(stderr, "\nError: first picture of GOP in display order must be I or B\n");
}
switch (vid_stream->group.code_types[i - 1]) {
case I_TYPE:
case P_TYPE:
break;
default:
/* This message may be bogus if GOP size was too big. */
fprintf(stderr, "\nError: last picture of GOP in display order must be I or P\n");
}
}
/*
*--------------------------------------------------------------
*
* ParsePicture --
*
* Parses picture header. Marks picture to be presented
* at particular time given a time stamp.
*
* Results:
* Values from picture header put into video stream structure.
*
* Side effects:
* Bit stream irreversibly parsed.
*
*--------------------------------------------------------------
*/
static int
ParsePicture(vid_stream, time_stamp)
VidStream *vid_stream;
TimeStamp time_stamp;
{
unsigned int data;
int i;
static int last_bit_count=0;
#ifdef doesntwork
static int vbv_size=0;
static double vbv_delay=0.0;
#endif
/* Flush header start code. */
flush_bits32;
/* Parse off temporal reference. */
get_bits10(data);
vid_stream->picture.temp_ref = data;
/* Parse of picture type. */
get_bits3(data);
if (data < I_TYPE || data > D_TYPE) {
fprintf(stderr, "\nError: picture_coding_type is forbidden or reserved (frame %d, type %d)\n",
blks.frame+1,data);
} else if (vid_stream->group.picture_count == 0 && data != I_TYPE) {
fprintf(stderr, "\nError: First picture of GOP in bitstream order must be I\n");
}
vid_stream->picture.code_type = data;
if (vid_stream->group.picture_count < vid_stream->group.max_code_types) {
if (vid_stream->group.code_types[vid_stream->picture.temp_ref] == 0) {
/* Out-of-order temporal_references are currently not detected */
vid_stream->group.code_types[vid_stream->picture.temp_ref] =
vid_stream->picture.code_type;
} else {
fprintf(stderr, "\nError: temporal reference %d duplicated in GOP\n",
vid_stream->picture.temp_ref);
/*
* TODO: this is actually legal for GOP size >= 1024, since
* temporal_reference is a modulo 1024 number. (See 11172-2 2.4.3.4)
*/
}
} else if (vid_stream->group.picture_count == vid_stream->group.max_code_types) {
/* Only print this message once */
fprintf(stderr, "\nWarning: GOP size bigger than I can check\n");
/*
* TODO: could realloc & increase max_code_types, but would also need
* to handle temporal_reference values being reused.
*/
}
/* Parse off vbv buffer delay value. */
get_bits16(data);
vid_stream->picture.vbv_delay = data;
#ifdef doesntwork
Unfortunately, vbv_delay > picture_delay a lot, so this doesnt work at all.
Need to be rethought out.
{ /* Check out VBV Buffer fullness */
/* static int last_bit_count=0, vbv_size=0, vbv_delay=0;*/
static int rate = -1;
static int buffer_size;
static double picture_delay;
if (rate == -1) {
rate = vid_stream->bit_rate * 400;
buffer_size = vid_stream->vbv_buffer_size*16*1024;
picture_delay = (1.0/VidRateNum[vid_stream->picture_rate]);
/* Dont do anything at first picture */
} else {
vbv_size += rate * vbv_delay;
if (vbv_size > buffer_size) {
fprintf(stderr,"VBV overflow at frame %d (%d > %d bits)\n",
blks.frame, vbv_size, buffer_size);
}
vbv_size -= (bitCountRead() - last_bit_count);
if (vbv_size < 0) {
fprintf(stderr,"VBV underflow at frame %d (%d < 0 bits)\n",
blks.frame, vbv_size);
}
if (picture_delay < vbv_delay) {
fprintf(stderr,"Yikes, vbv_delay > one frame time! (%g < %g)\n",
picture_delay,vbv_delay);
}
vbv_size += rate * (picture_delay = vbv_delay); /* add in missed time */
vbv_delay = data / 90000.0;
}
}
#endif
blks.frame++;
if (START_F&opts) {
COLLECTING = (blks.frame>=start_opt)?COLLECT_ON:COLLECT_OFF;
}
if (opts&END_F) {
if (blks.frame > end_opt) {
PrintGOP(vid_stream);
printf("Done Collecting!\n");
PrintAllStats();
PrintTimeInfo();
DestroyVidStream(vid_stream);
exit(0);
}
}
vid_stream->group.picture_count++;
/* echo frame type on screen */
if (opts&COLLECTING&LOUD) printtype(vid_stream);
if (opts&COLLECTING&OFFS_INFO) {
fprintf(offs_fp,"picture %d (%d)\n",
bitCountRead(),vid_stream->picture.temp_ref);
}
if ((vid_stream->picture.code_type == B_TYPE) &&
((vid_stream->future == NULL) ||
((vid_stream->past == NULL) && !(vid_stream->group.closed_gop)))) {
/* According to 2-D.5.1 (p D-18) this is ok, if the refereneces are OK */
last_bit_count = bitCountRead();
vid_stream->group.code_types[vid_stream->picture.temp_ref] = SKIP_B_TYPE;
return SKIP_PICTURE;
}
if ((vid_stream->picture.code_type == P_TYPE) &&
(vid_stream->future == NULL)) {
last_bit_count=bitCountRead();
vid_stream->group.code_types[vid_stream->picture.temp_ref] = SKIP_P_TYPE;
return SKIP_PICTURE;
}
StartTime();
if (COLLECTING) {
stat_a[0].frametype = vid_stream->picture.code_type;
stat_a[0].totsize = 45;
stat_a[0].number = 1;
pictureSizeCount = bitCountRead();
if (opts&COLLECTING&BLOCK_INFO) {
blks.slice=0; blks.block=0;
fprintf(block_fp,"frame %d %c %s\n", blks.frame,
"0IPB"[stat_a[0].frametype],
(vid_stream->picture.full_pel_forw_vector?"whole":"half"));
}
}
/* If P or B type frame... */
if ((vid_stream->picture.code_type == 2) ||
(vid_stream->picture.code_type == 3)) {
/* Parse off forward vector full pixel flag. */
get_bits1(data);
if (data)
vid_stream->picture.full_pel_forw_vector = TRUE;
else
vid_stream->picture.full_pel_forw_vector = FALSE;
/* Parse of forw_r_code. */
get_bits3(data);
f_code_ok &= (data <= 4);
/* Decode forw_r_code into forw_r_size and forw_f. */
vid_stream->picture.forw_r_size = data - 1;
vid_stream->picture.forw_f = (1 << vid_stream->picture.forw_r_size);
}
/* If B type frame... */
if (vid_stream->picture.code_type == 3) {
/* Parse off back vector full pixel flag. */
get_bits1(data);
if (data)
vid_stream->picture.full_pel_back_vector = TRUE;
else
vid_stream->picture.full_pel_back_vector = FALSE;
/* Parse off back_r_code. */
get_bits3(data);
f_code_ok &= (data <= 4);
/* Decode back_r_code into back_r_size and back_f. */
vid_stream->picture.back_r_size = data - 1;
vid_stream->picture.back_f = (1 << vid_stream->picture.back_r_size);
}
/* Get extra bit picture info. */
if (vid_stream->picture.extra_info != NULL) {
free(vid_stream->picture.extra_info);
vid_stream->picture.extra_info = NULL;
}
vid_stream->picture.extra_info = get_extra_bit_info();
/* Goto next start code. */
next_start_code();
/* If start code is extension start code, parse off extension data. */
if (next_bits(32, EXT_START_CODE)) {
flush_bits32;
if (vid_stream->picture.ext_data != NULL) {
free(vid_stream->picture.ext_data);
vid_stream->picture.ext_data = NULL;
}
vid_stream->picture.ext_data = get_ext_data(&vid_stream->picture.ext_size);
}
/* If start code is user start code, parse off user data. */
if (next_bits(32, USER_START_CODE)) {
flush_bits32;
if (vid_stream->picture.user_data != NULL) {
free(vid_stream->picture.user_data);
vid_stream->picture.user_data = NULL;
}
vid_stream->picture.user_data = get_ext_data(&vid_stream->picture.user_size);
if ( vid_stream->group.user_size > 0 && opts&COLLECTING&USERDAT_INFO) {
fprintf(userdat_fp, "Picture Header (%d) user data:\n", blks.frame);
print_binary(userdat_fp, vid_stream->user_data, vid_stream->user_size);
}
}
/* Find a pict image structure in ring buffer not currently locked. */
i = 0;
while (vid_stream->ring[i]->locked != 0) {
if (++i >= RING_BUF_SIZE) {
fprintf(stderr,"Fatal error. Ring buffer full.");
exit(1);
}
}
/* Set current pict image structure to the one just found in ring. */
vid_stream->current = vid_stream->ring[i];
/* Set time stamp. */
vid_stream->current->show_time = time_stamp;
/* Reset past macroblock address field. */
vid_stream->mblock.past_mb_addr = -1;
last_bit_count = bitCountRead();
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* ParseSlice --
*
* Parses off slice header.
*
* Results:
* Values found in slice header put into video stream structure.
*
* Side effects:
* Bit stream irreversibly parsed.
*
*--------------------------------------------------------------
*/
static int
ParseSlice(vid_stream)
VidStream *vid_stream;
{
unsigned int data;
/* Flush slice start code. */
flush_bits(24);
/* Parse off slice vertical position. */
get_bits8(data);
vid_stream->slice.vert_pos = data;
/* Parse off quantization scale. */
get_bits5(data);
vid_stream->slice.quant_scale = data;
if (opts&COLLECTING&BLOCK_INFO) {
blks.slice++;
blks.qs=data;
fprintf(block_fp,"slice %d %d\n",blks.slice,data);
}
if (opts&COLLECTING&OFFS_INFO) {
fprintf(offs_fp,"slice %d (%d)\n",bitCountRead()-37,vid_stream->slice.vert_pos);
}
/* Parse off extra bit slice info. */
if (vid_stream->slice.extra_info != NULL) {
free(vid_stream->slice.extra_info);
vid_stream->slice.extra_info = NULL;
}
vid_stream->slice.extra_info = get_extra_bit_info();
/* Reset past intrablock address. */
vid_stream->mblock.past_intra_addr = -2;
/* Reset previous recon motion vectors. */
vid_stream->mblock.recon_right_for_prev = 0;
vid_stream->mblock.recon_down_for_prev = 0;
vid_stream->mblock.recon_right_back_prev = 0;
vid_stream->mblock.recon_down_back_prev = 0;
/* Reset macroblock address. */
vid_stream->mblock.mb_address = ((vid_stream->slice.vert_pos - 1) *
vid_stream->mb_width) - 1;
/* Reset past dct dc y, cr, and cb values. */
vid_stream->block.dct_dc_y_past = 1024;
vid_stream->block.dct_dc_cr_past = 1024;
vid_stream->block.dct_dc_cb_past = 1024;
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* ParseMacroBlock --
*
* Parseoff macroblock. Reconstructs DCT values. Applies
* inverse DCT, reconstructs motion vectors, calculates and
* set pixel values for macroblock in current pict image
* structure.
*
* Results:
* Here's where everything really happens. Welcome to the
* heart of darkness.
*
* Side effects:
* Bit stream irreversibly parsed off.
*
*--------------------------------------------------------------
*/
static int
ParseMacroBlock(vid_stream)
VidStream *vid_stream;
{
int addr_incr;
unsigned int data;
int mask, i, recon_right_for, recon_down_for, recon_right_back,
recon_down_back;
int zero_block_flag;
BOOLEAN mb_quant, mb_motion_forw, mb_motion_back, mb_pattern;
int no_dith_flag = 0;
static char mbtyp[20];
int result;
unsigned int mb_scratch; /* used in Decode macros */
mbSizeCount = bitCountRead();
/*
* Parse off macroblock address increment and add to macroblock address.
*/
do {
unsigned int index;
show_bits11(index);
addr_incr = mb_addr_inc[index].value;
flush_bits(mb_addr_inc[index].num_bits);
if (mb_addr_inc[index].num_bits==0) {
/* Error in table lookup! */
fprintf(stderr,"Error in macroblock increment at frame %d, PREVIOUS mb %d\n",
blks.frame, vid_stream->mblock.mb_address);
fprintf(stderr,"\tat byte offset %d in file. Ignoring.\n", bitCountRead());
addr_incr = 0;
}
if (addr_incr == MB_ESCAPE) {
vid_stream->mblock.mb_address += 33;
addr_incr = MB_STUFFING;
}
} while (addr_incr == MB_STUFFING);
vid_stream->mblock.mb_address += addr_incr;
if (vid_stream->mblock.mb_address > (vid_stream->mb_height *
vid_stream->mb_width - 1)) {
sprintf(errorSpecifics,"\nMB address is %d, height is %d, width %d.\n",
vid_stream->mblock.mb_address,
vid_stream->mb_height,vid_stream->mb_width);
return SKIP_TO_START_CODE;
}
/*
* If macroblocks have been skipped, process skipped macroblocks.
*/
if (vid_stream->mblock.mb_address - vid_stream->mblock.past_mb_addr > 1) {
blks.mb_skipped += vid_stream->mblock.mb_address - vid_stream->mblock.past_mb_addr-1;
if (vid_stream->picture.code_type == P_TYPE)
ProcessSkippedPFrameMBlocks(vid_stream);
else if (vid_stream->picture.code_type == B_TYPE)
ProcessSkippedBFrameMBlocks(vid_stream);
} else blks.mb_coded++;
mbSizeCount = bitCountRead();
/* Set past macroblock address to current macroblock address. */
vid_stream->mblock.past_mb_addr = vid_stream->mblock.mb_address;
/* Based on picture type decode macroblock type. */
switch (vid_stream->picture.code_type) {
case I_TYPE:
DecodeMBTypeI(mb_quant, mb_motion_forw, mb_motion_back, mb_pattern,
vid_stream->mblock.mb_intra);
break;
case P_TYPE:
DecodeMBTypeP(mb_quant, mb_motion_forw, mb_motion_back, mb_pattern,
vid_stream->mblock.mb_intra);
break;
case B_TYPE:
DecodeMBTypeB(mb_quant, mb_motion_forw, mb_motion_back, mb_pattern,
vid_stream->mblock.mb_intra);
break;
}
/* If quantization flag set, parse off new quantization scale. */
if (mb_quant == TRUE) {
get_bits5(data);
vid_stream->slice.quant_scale = data;
}
stat_a[vid_stream->picture.code_type].qual += vid_stream->slice.quant_scale;
stat_a[vid_stream->picture.code_type].qnum++;
if (opts&COLLECTING&BLOCK_INFO) {
blks.qs=vid_stream->slice.quant_scale;
blks.block++;
/* Clear, so we dont get old data later */
*dctSpecifics='\0';
}
if (opts&COLLECTING&QSCALE_INFO) {
blks.q[vid_stream->picture.code_type][vid_stream->slice.quant_scale]++;
}
/* If forward motion vectors exist... */
if (mb_motion_forw == TRUE) {
/* Parse off and decode horizontal forward motion vector. */
DecodeMotionVectors(vid_stream->mblock.motion_h_forw_code);
/* If horiz. forward r data exists, parse off. */
if ((vid_stream->picture.forw_f != 1) &&
(vid_stream->mblock.motion_h_forw_code != 0)) {
get_bitsn(vid_stream->picture.forw_r_size, data);
vid_stream->mblock.motion_h_forw_r = data;
}
/* Parse off and decode vertical forward motion vector. */
DecodeMotionVectors(vid_stream->mblock.motion_v_forw_code);
/* If vert. forw. r data exists, parse off. */
if ((vid_stream->picture.forw_f != 1) &&
(vid_stream->mblock.motion_v_forw_code != 0)) {
get_bitsn(vid_stream->picture.forw_r_size, data);
vid_stream->mblock.motion_v_forw_r = data;
}
}
/* If back motion vectors exist... */
if (mb_motion_back == TRUE) {
/* Parse off and decode horiz. back motion vector. */
DecodeMotionVectors(vid_stream->mblock.motion_h_back_code);
/* If horiz. back r data exists, parse off. */
if ((vid_stream->picture.back_f != 1) &&
(vid_stream->mblock.motion_h_back_code != 0)) {
get_bitsn(vid_stream->picture.back_r_size, data);
vid_stream->mblock.motion_h_back_r = data;
}
/* Parse off and decode vert. back motion vector. */
DecodeMotionVectors(vid_stream->mblock.motion_v_back_code);
/* If vert. back r data exists, parse off. */
if ((vid_stream->picture.back_f != 1) &&
(vid_stream->mblock.motion_v_back_code != 0)) {
get_bitsn(vid_stream->picture.back_r_size, data);
vid_stream->mblock.motion_v_back_r = data;
}
}
if (COLLECTING) {
if (vid_stream->mblock.mb_intra) {
stat_a[0].i_mbnum++;
mbCBPPtr = stat_a[0].i_mbcbp;
mbCoeffPtr = stat_a[0].i_mbcoeff;
mbSizePtr = &(stat_a[0].i_mbsize);
} else if (mb_motion_back && mb_motion_forw) {
stat_a[0].bi_mbnum++;
mbCBPPtr = stat_a[0].bi_mbcbp;
mbCoeffPtr = stat_a[0].bi_mbcoeff;
mbSizePtr = &(stat_a[0].bi_mbsize);
} else if (mb_motion_back) {
stat_a[0].b_mbnum++;
mbCBPPtr = stat_a[0].b_mbcbp;
mbCoeffPtr = stat_a[0].b_mbcoeff;
mbSizePtr = &(stat_a[0].b_mbsize);
} else {
stat_a[0].p_mbnum++;
mbCBPPtr = stat_a[0].p_mbcbp;
mbCoeffPtr = stat_a[0].p_mbcoeff;
mbSizePtr = &(stat_a[0].p_mbsize);
}
}
/* If mblock pattern flag set, parse and decode CBP (code block pattern). */
if (mb_pattern == TRUE) {
DecodeCBP(vid_stream->mblock.cbp);
}
/* Otherwise, set CBP to zero. */
else
vid_stream->mblock.cbp = 0;
if (COLLECTING) mbCBPPtr[vid_stream->mblock.cbp]++;
/* Reconstruct motion vectors depending on picture type. */
if (vid_stream->picture.code_type == P_TYPE) {
/*
* If no forw motion vectors, reset previous and current vectors to 0.
*/
if (!mb_motion_forw) {
recon_right_for = 0;
recon_down_for = 0;
vid_stream->mblock.recon_right_for_prev = 0;
vid_stream->mblock.recon_down_for_prev = 0;
}
/*
* Otherwise, compute new forw motion vectors. Reset previous vectors to
* current vectors.
*/
else {
ComputeForwVector(&recon_right_for, &recon_down_for);
}
}
if (vid_stream->picture.code_type == B_TYPE) {
/* Reset prev. and current vectors to zero if mblock is intracoded. */
if (vid_stream->mblock.mb_intra) {
vid_stream->mblock.recon_right_for_prev = 0;
vid_stream->mblock.recon_down_for_prev = 0;
vid_stream->mblock.recon_right_back_prev = 0;
vid_stream->mblock.recon_down_back_prev = 0;
} else {
/* If no forw vectors, current vectors equal prev. vectors. */
if (!mb_motion_forw) {
recon_right_for = vid_stream->mblock.recon_right_for_prev;
recon_down_for = vid_stream->mblock.recon_down_for_prev;
}
/*
* Otherwise compute forw. vectors. Reset prev vectors to new values.
*/
else {
ComputeForwVector(&recon_right_for, &recon_down_for);
}
/* If no back vectors, set back vectors to prev back vectors. */
if (!mb_motion_back) {
recon_right_back = vid_stream->mblock.recon_right_back_prev;
recon_down_back = vid_stream->mblock.recon_down_back_prev;
}
/* Otherwise compute new vectors and reset prev. back vectors. */
else {
ComputeBackVector(&recon_right_back, &recon_down_back);
}
/*
* Store vector existance flags in structure for possible skipped
* macroblocks to follow.
*/
vid_stream->mblock.bpict_past_forw = mb_motion_forw;
vid_stream->mblock.bpict_past_back = mb_motion_back;
}
}
if (COLLECTING&opts&BLOCK_INFO) {
if (vid_stream->mblock.mb_intra) {
sprintf(mbtyp,"intra");
} else if (mb_motion_back && mb_motion_forw) {
sprintf(mbtyp,"forw+back <%d, %d> <%d, %d>",
recon_right_for, recon_down_for,
recon_right_back, recon_down_back);
} else if (mb_motion_back) {
sprintf(mbtyp,"back <%d, %d>",recon_right_back, recon_down_back);
} else if (mb_motion_forw) {
sprintf(mbtyp,"forw <%d, %d>",recon_right_for, recon_down_for);
} else
sprintf(mbtyp,"0 motion, %s",
mb_quant ? "Quant and cbp" : "cbp");
#ifdef not_defined
/* old code to print all flags, silly really */
sprintf(mbtyp,"No motion? %1u%1u%1u%1u%1u (%x, %x, %x)",
mb_quant, mb_motion_forw, mb_motion_back, mb_pattern,
vid_stream->mblock.mb_intra,(mb_pattern?mb_scratch:0xffffffff),
coded_block_pattern[mb_scratch].cbp,
coded_block_pattern[mb_scratch].num_bits);
#endif
}
/* For each possible block in macroblock. */
{
{
for (mask = 32, i = 0; i < 6; mask >>= 1, i++) {
/* If block exists... */
if (vid_stream->mblock.mb_intra) {
zero_block_flag = 0;
if ((opts&VERIFY) || (opts&COLLECTING&HIST_INFO) ||
(opts&COLLECTING&DCT_INFO)) {
if ((result=ParseReconBlock(i))!=PARSE_OK)
return result;
} else ParseAwayBlock(i);
} else {
if (vid_stream->mblock.cbp & mask) {
blks.cblks++;
blks.chist[i]++;
zero_block_flag = 0;
if ((opts&VERIFY) || (opts&COLLECTING&HIST_INFO) ||
(opts&COLLECTING&DCT_INFO)) {
if ((result=ParseReconBlock(i))!=PARSE_OK)
return result;
} else ParseAwayBlock(i);
} else {
zero_block_flag = 1;
}
blks.nblks++;
}
if (opts&VERIFY) { /* No need to do this if not verifying */
if (vid_stream->mblock.mb_intra) {
int result;
if ((result=ReconIMBlock(vid_stream, i)) != PARSE_OK)
return result;
} else if (mb_motion_forw && mb_motion_back) {
ReconBiMBlock(vid_stream, i, recon_right_for, recon_down_for,
recon_right_back, recon_down_back, zero_block_flag);
} else if (mb_motion_forw || (vid_stream->picture.code_type == P_TYPE)) {
ReconPMBlock(vid_stream, i, recon_right_for, recon_down_for,
zero_block_flag);
} else if (mb_motion_back) {
ReconBMBlock(vid_stream, i, recon_right_back, recon_down_back,
zero_block_flag);
}
}
}
}
}
if ((ditherType == MBORDERED_DITHER) && (!no_dith_flag)) {
if ((vid_stream->picture.code_type == 2) &&
(vid_stream->mblock.cbp == 0) &&
(!vid_stream->mblock.mb_intra)) {
ditherFlags[vid_stream->mblock.mb_address] = 0;
}
else {
ditherFlags[vid_stream->mblock.mb_address] = 1;
}
}
/* If D Type picture, flush marker bit. */
if (vid_stream->picture.code_type == 4)
flush_bits(1);
/* If macroblock was intracoded, set macroblock past intra address. */
if (vid_stream->mblock.mb_intra)
vid_stream->mblock.past_intra_addr =
vid_stream->mblock.mb_address;
if (opts&COLLECTING&BLOCK_INFO) {
if ((vid_stream->mblock.mb_intra) || (!mb_pattern))
fprintf(block_fp,"block %d %c %d %d %s%s\n",
blks.block-1,"0IPBD"[vid_stream->picture.code_type],
blks.qs, bitCountRead() - mbSizeCount, mbtyp,
dctSpecifics /* null if not collecting them */
);
else {
fprintf(block_fp,"block %d %c %d %d %s %1u%1u%1u%1u%1u%1u%s\n",
blks.block-1,
"0IPBD"[vid_stream->picture.code_type],
blks.qs, bitCountRead() - mbSizeCount, mbtyp,
(vid_stream->mblock.cbp&0x20)>>5,
(vid_stream->mblock.cbp&0x10)>>4,
(vid_stream->mblock.cbp&0x08)>>3,
(vid_stream->mblock.cbp&0x04)>>2,
(vid_stream->mblock.cbp&0x02)>>1,
vid_stream->mblock.cbp&0x01,
dctSpecifics /* null if not collecting them */
);
}
}
if (COLLECTING) *mbSizePtr += bitCountRead() - mbSizeCount;
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* ReconIMBlock --
*
* Reconstructs intra coded macroblock.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
#define video_assert(x,expression)\
if (!(expression)) {\
sprintf (errorSpecifics,"\nBad crop value (%d) at line %d\n", x, __LINE__);\
return SKIP_TO_START_CODE;}
#define assertCrop(x) video_assert(x,((x) >= -MAX_NEG_CROP) && \
((x) <= 2048+MAX_NEG_CROP))
static int
ReconIMBlock(vid_stream, bnum)
VidStream *vid_stream;
int bnum;
{
int mb_row, mb_col, row, col, row_size, rr;
unsigned char *dest;
/* Calculate macroblock row and column from address. */
mb_row = vid_stream->mblock.mb_address / vid_stream->mb_width;
mb_col = vid_stream->mblock.mb_address % vid_stream->mb_width;
/* If block is luminance block... */
if (bnum < 4) {
/* Calculate row and col values for upper left pixel of block. */
row = mb_row * 16;
col = mb_col * 16;
if (bnum > 1)
row += 8;
if (bnum % 2)
col += 8;
/* Set dest to luminance plane of current pict image. */
dest = vid_stream->current->luminance;
/* Establish row size. */
row_size = vid_stream->mb_width * 16;
}
/* Otherwise if block is Cb block... */
else if (bnum == 4) {
/* Set dest to Cb plane of current pict image. */
dest = vid_stream->current->Cb;
/* Establish row size. */
row_size = vid_stream->mb_width * 8;
/* Calculate row,col for upper left pixel of block. */
row = mb_row * 8;
col = mb_col * 8;
}
/* Otherwise block is Cr block, and ... */
else {
/* Set dest to Cr plane of current pict image. */
dest = vid_stream->current->Cr;
/* Establish row size. */
row_size = vid_stream->mb_width * 8;
/* Calculate row,col for upper left pixel value of block. */
row = mb_row * 8;
col = mb_col * 8;
}
/*
* For each pixel in block, set to cropped reconstructed value from inverse
* dct.
*/
{
short *sp = &vid_stream->block.dct_recon[0][0];
unsigned char *cm = cropTbl + MAX_NEG_CROP;
dest += row * row_size + col;
for (rr = 0; rr < 4; rr++, sp += 16, dest += row_size) {
dest[0] = cm[sp[0]];
assertCrop(sp[0]);
dest[1] = cm[sp[1]];
assertCrop(sp[1]);
dest[2] = cm[sp[2]];
assertCrop(sp[2]);
dest[3] = cm[sp[3]];
assertCrop(sp[3]);
dest[4] = cm[sp[4]];
assertCrop(sp[4]);
dest[5] = cm[sp[5]];
assertCrop(sp[5]);
dest[6] = cm[sp[6]];
assertCrop(sp[6]);
dest[7] = cm[sp[7]];
assertCrop(sp[7]);
dest += row_size;
dest[0] = cm[sp[8]];
assertCrop(sp[8]);
dest[1] = cm[sp[9]];
assertCrop(sp[9]);
dest[2] = cm[sp[10]];
assertCrop(sp[10]);
dest[3] = cm[sp[11]];
assertCrop(sp[11]);
dest[4] = cm[sp[12]];
assertCrop(sp[12]);
dest[5] = cm[sp[13]];
assertCrop(sp[13]);
dest[6] = cm[sp[14]];
assertCrop(sp[14]);
dest[7] = cm[sp[15]];
assertCrop(sp[15]);
}
}
return PARSE_OK;
}
/*
*--------------------------------------------------------------
*
* ReconPMBlock --
*
* Reconstructs forward predicted macroblocks.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
static void
ReconPMBlock(vid_stream, bnum, recon_right_for, recon_down_for, zflag)
VidStream *vid_stream;
int bnum, recon_right_for, recon_down_for, zflag;
{
int mb_row, mb_col, row, col, row_size, rr;
unsigned char *dest, *past;
static int right_for, down_for, right_half_for, down_half_for;
unsigned char *rindex1, *rindex2;
unsigned char *index;
short int *blockvals;
int maxx, maxy, cc;
int illegalBlock = 0;
int row_start, row_end, rfirst, rlast, col_start, col_end, cfirst, clast;
/* Calculate macroblock row and column from address. */
mb_row = vid_stream->mblock.mb_address / vid_stream->mb_width;
mb_col = vid_stream->mblock.mb_address % vid_stream->mb_width;
if (bnum < 4) {
/* Calculate right_for, down_for motion vectors. */
right_for = recon_right_for >> 1;
down_for = recon_down_for >> 1;
right_half_for = recon_right_for & 0x1;
down_half_for = recon_down_for & 0x1;
/* Set dest to luminance plane of current pict image. */
dest = vid_stream->current->luminance;
if (vid_stream->picture.code_type == B_TYPE) {
if (vid_stream->past != NULL)
past = vid_stream->past->luminance;
} else {
/* Set predicitive frame to current future frame. */
if (vid_stream->future != NULL)
past = vid_stream->future->luminance;
}
/* Establish row size. */
row_size = vid_stream->mb_width << 4;
/* Calculate row,col of upper left pixel in block. */
row = mb_row << 4;
col = mb_col << 4;
if (bnum > 1)
row += 8;
if (bnum % 2)
col += 8;
/* Check for block illegality. */
maxx = lmaxx; maxy = lmaxy;
if (row + down_for > maxy) illegalBlock |= 0x4;
else if (row + down_for < 0) illegalBlock |= 0x1;
if (col + right_for > maxx) illegalBlock |= 0x2;
else if (col + right_for < 0) illegalBlock |= 0x8;
if (illegalBlock) {
fprintf(stderr,"Illegal vector in luminance forward-reconstruction of <%d, %d>\n\
frame %d, macro block %d, block %d\n",
row + down_for, col + right_for, blks.frame,
vid_stream->mblock.mb_address, bnum);
}
}
/* Otherwise, block is NOT luminance block, ... */
else {
/* Construct motion vectors. */
recon_right_for /= 2;
recon_down_for /= 2;
right_for = recon_right_for >> 1;
down_for = recon_down_for >> 1;
right_half_for = recon_right_for & 0x1;
down_half_for = recon_down_for & 0x1;
/* Establish row size. */
row_size = vid_stream->mb_width << 3;
/* Calculate row,col of upper left pixel in block. */
row = mb_row << 3;
col = mb_col << 3;
/* Check for block illegality. */
maxx = cmaxx; maxy = cmaxy;
if (row + down_for > maxy) illegalBlock |= 0x4;
else if (row + down_for < 0) illegalBlock |= 0x1;
if (col + right_for > maxx) illegalBlock |= 0x2;
else if (col + right_for < 0) illegalBlock |= 0x8;
if (illegalBlock) {
fprintf(stderr,"Illegal vector in Cr/Cb forward-reconstruction of <%d, %d>\n\
frame %d, macro block %d, block %d\n",
row + down_for, col + right_for, blks.frame,
vid_stream->mblock.mb_address, bnum);
}
/* If block is Cr block... */
if (bnum == 4) {
/* Set dest to Cr plane of current pict image. */
dest = vid_stream->current->Cr;
if (vid_stream->picture.code_type == B_TYPE) {
if (vid_stream->past != NULL)
past = vid_stream->past->Cr;
} else {
if (vid_stream->future != NULL)
past = vid_stream->future->Cr;
}
}
/* Otherwise, block is Cb block... */
else {
/* Set dest to Cb plane of current pict image. */
dest = vid_stream->current->Cb;
if (vid_stream->picture.code_type == B_TYPE) {
if (vid_stream->past != NULL)
past = vid_stream->past->Cb;
} else {
if (vid_stream->future != NULL)
past = vid_stream->future->Cb;
}
}
}
/* For each pixel in block... */
index = dest + (row * row_size) + col;
rindex1 = past + (row + down_for) * row_size + col + right_for;
blockvals = &(vid_stream->block.dct_recon[0][0]);
/*
* Calculate predictive pixel value based on motion vectors and copy to
* dest plane.
*/
if ((!down_half_for) && (!right_half_for)) {
unsigned char *cm = cropTbl + MAX_NEG_CROP;
if (!zflag)
for (rr = 0; rr < 4; rr++) {
index[0] = cm[(int) rindex1[0] + (int) blockvals[0]];
index[1] = cm[(int) rindex1[1] + (int) blockvals[1]];
index[2] = cm[(int) rindex1[2] + (int) blockvals[2]];
index[3] = cm[(int) rindex1[3] + (int) blockvals[3]];
index[4] = cm[(int) rindex1[4] + (int) blockvals[4]];
index[5] = cm[(int) rindex1[5] + (int) blockvals[5]];
index[6] = cm[(int) rindex1[6] + (int) blockvals[6]];
index[7] = cm[(int) rindex1[7] + (int) blockvals[7]];
index += row_size;
rindex1 += row_size;
index[0] = cm[(int) rindex1[0] + (int) blockvals[8]];
index[1] = cm[(int) rindex1[1] + (int) blockvals[9]];
index[2] = cm[(int) rindex1[2] + (int) blockvals[10]];
index[3] = cm[(int) rindex1[3] + (int) blockvals[11]];
index[4] = cm[(int) rindex1[4] + (int) blockvals[12]];
index[5] = cm[(int) rindex1[5] + (int) blockvals[13]];
index[6] = cm[(int) rindex1[6] + (int) blockvals[14]];
index[7] = cm[(int) rindex1[7] + (int) blockvals[15]];
blockvals += 16;
index += row_size;
rindex1 += row_size;
}
else {
if (right_for & 0x1) {
/* No alignment, use bye copy */
for (rr = 0; rr < 4; rr++) {
index[0] = rindex1[0];
index[1] = rindex1[1];
index[2] = rindex1[2];
index[3] = rindex1[3];
index[4] = rindex1[4];
index[5] = rindex1[5];
index[6] = rindex1[6];
index[7] = rindex1[7];
index += row_size;
rindex1 += row_size;
index[0] = rindex1[0];
index[1] = rindex1[1];
index[2] = rindex1[2];
index[3] = rindex1[3];
index[4] = rindex1[4];
index[5] = rindex1[5];
index[6] = rindex1[6];
index[7] = rindex1[7];
index += row_size;
rindex1 += row_size;
}
} else if (right_for & 0x2) {
/* Half-word bit aligned, use 16 bit copy */
short *src = (short *)rindex1;
short *dest = (short *)index;
row_size >>= 1;
for (rr = 0; rr < 4; rr++) {
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest += row_size;
src += row_size;
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest += row_size;
src += row_size;
}
} else {
/* Word aligned, use 32 bit copy */
int *src = (int *)rindex1;
int *dest = (int *)index;
row_size >>= 2;
for (rr = 0; rr < 4; rr++) {
dest[0] = src[0];
dest[1] = src[1];
dest += row_size;
src += row_size;
dest[0] = src[0];
dest[1] = src[1];
dest += row_size;
src += row_size;
}
}
}
} else {
unsigned char *cm = cropTbl + MAX_NEG_CROP;
rindex2 = rindex1 + right_half_for + (down_half_for * row_size);
if (!zflag)
for (rr = 0; rr < 4; rr++) {
index[0] = cm[((int) (rindex1[0] + rindex2[0]) >> 1) + blockvals[0]];
index[1] = cm[((int) (rindex1[1] + rindex2[1]) >> 1) + blockvals[1]];
index[2] = cm[((int) (rindex1[2] + rindex2[2]) >> 1) + blockvals[2]];
index[3] = cm[((int) (rindex1[3] + rindex2[3]) >> 1) + blockvals[3]];
index[4] = cm[((int) (rindex1[4] + rindex2[4]) >> 1) + blockvals[4]];
index[5] = cm[((int) (rindex1[5] + rindex2[5]) >> 1) + blockvals[5]];
index[6] = cm[((int) (rindex1[6] + rindex2[6]) >> 1) + blockvals[6]];
index[7] = cm[((int) (rindex1[7] + rindex2[7]) >> 1) + blockvals[7]];
index += row_size;
rindex1 += row_size;
rindex2 += row_size;
index[0] = cm[((int) (rindex1[0] + rindex2[0]) >> 1) + blockvals[8]];
index[1] = cm[((int) (rindex1[1] + rindex2[1]) >> 1) + blockvals[9]];
index[2] = cm[((int) (rindex1[2] + rindex2[2]) >> 1) + blockvals[10]];
index[3] = cm[((int) (rindex1[3] + rindex2[3]) >> 1) + blockvals[11]];
index[4] = cm[((int) (rindex1[4] + rindex2[4]) >> 1) + blockvals[12]];
index[5] = cm[((int) (rindex1[5] + rindex2[5]) >> 1) + blockvals[13]];
index[6] = cm[((int) (rindex1[6] + rindex2[6]) >> 1) + blockvals[14]];
index[7] = cm[((int) (rindex1[7] + rindex2[7]) >> 1) + blockvals[15]];
blockvals += 16;
index += row_size;
rindex1 += row_size;
rindex2 += row_size;
}
else
for (rr = 0; rr < 4; rr++) {
index[0] = (int) (rindex1[0] + rindex2[0]) >> 1;
index[1] = (int) (rindex1[1] + rindex2[1]) >> 1;
index[2] = (int) (rindex1[2] + rindex2[2]) >> 1;
index[3] = (int) (rindex1[3] + rindex2[3]) >> 1;
index[4] = (int) (rindex1[4] + rindex2[4]) >> 1;
index[5] = (int) (rindex1[5] + rindex2[5]) >> 1;
index[6] = (int) (rindex1[6] + rindex2[6]) >> 1;
index[7] = (int) (rindex1[7] + rindex2[7]) >> 1;
index += row_size;
rindex1 += row_size;
rindex2 += row_size;
index[0] = (int) (rindex1[0] + rindex2[0]) >> 1;
index[1] = (int) (rindex1[1] + rindex2[1]) >> 1;
index[2] = (int) (rindex1[2] + rindex2[2]) >> 1;
index[3] = (int) (rindex1[3] + rindex2[3]) >> 1;
index[4] = (int) (rindex1[4] + rindex2[4]) >> 1;
index[5] = (int) (rindex1[5] + rindex2[5]) >> 1;
index[6] = (int) (rindex1[6] + rindex2[6]) >> 1;
index[7] = (int) (rindex1[7] + rindex2[7]) >> 1;
index += row_size;
rindex1 += row_size;
rindex2 += row_size;
}
}
}
/*
*--------------------------------------------------------------
*
* ReconBMBlock --
*
* Reconstructs back predicted macroblocks.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
static void
ReconBMBlock(vid_stream, bnum, recon_right_back, recon_down_back, zflag)
VidStream *vid_stream;
int bnum, recon_right_back, recon_down_back, zflag;
{
int mb_row, mb_col, row, col, row_size, rr;
unsigned char *dest, *future;
int right_back, down_back, right_half_back, down_half_back;
unsigned char *rindex1, *rindex2;
unsigned char *index;
short int *blockvals;
int illegalBlock = 0;
int maxx, maxy, cc;
int row_start, row_end, rlast, rfirst, col_start, col_end, clast, cfirst;
/* Calculate macroblock row and column from address. */
mb_row = vid_stream->mblock.mb_address / vid_stream->mb_width;
mb_col = vid_stream->mblock.mb_address % vid_stream->mb_width;
/* If block is luminance block... */
if (bnum < 4) {
/* Calculate right_back, down_bakc motion vectors. */
right_back = recon_right_back >> 1;
down_back = recon_down_back >> 1;
right_half_back = recon_right_back & 0x1;
down_half_back = recon_down_back & 0x1;
/* Set dest to luminance plane of current pict image. */
dest = vid_stream->current->luminance;
/*
* If future frame exists, set future to luminance plane of future frame.
*/
if (vid_stream->future != NULL)
future = vid_stream->future->luminance;
/* Establish row size. */
row_size = vid_stream->mb_width << 4;
/* Calculate row,col of upper left pixel in block. */
row = mb_row << 4;
col = mb_col << 4;
if (bnum > 1)
row += 8;
if (bnum % 2)
col += 8;
/* Check for block illegality. */
maxx = lmaxx; maxy = lmaxy;
if (row + down_back > maxy) illegalBlock |= 0x4;
else if (row + down_back < 0) illegalBlock |= 0x1;
if (col + right_back > maxx) illegalBlock |= 0x2;
else if (col + right_back < 0) illegalBlock |= 0x8;
if (illegalBlock) {
fprintf(stderr,"Illegal vector in luminance backward-reconstruction of <%d, %d>\n\
frame %d, macro block %d, block %d\n",
row + down_back, col + right_back, blks.frame,
vid_stream->mblock.mb_address, bnum);
}
}
/* Otherwise, block is NOT luminance block, ... */
else {
/* Construct motion vectors. */
recon_right_back /= 2;
recon_down_back /= 2;
right_back = recon_right_back >> 1;
down_back = recon_down_back >> 1;
right_half_back = recon_right_back & 0x1;
down_half_back = recon_down_back & 0x1;
/* Establish row size. */
row_size = vid_stream->mb_width << 3;
/* Calculate row,col of upper left pixel in block. */
row = mb_row << 3;
col = mb_col << 3;
/* Check for block illegality. */
maxx = cmaxx; maxy = cmaxy;
if (row + down_back > maxy) illegalBlock |= 0x4;
else if (row + down_back < 0) illegalBlock |= 0x1;
if (col + right_back > maxx) illegalBlock |= 0x2;
else if (col + right_back < 0) illegalBlock |= 0x8;
if (illegalBlock) {
fprintf(stderr,"Illegal vector in Cr/Cb backward-reconstruction of <%d, %d>\n\
frame %d, macro block %d, block %d\n",
row + down_back, col + right_back, blks.frame,
vid_stream->mblock.mb_address, bnum);
}
/* If block is Cr block... */
if (bnum == 4) {
/* Set dest to Cr plane of current pict image. */
dest = vid_stream->current->Cr;
/*
* If future frame exists, set future to Cr plane of future image.
*/
if (vid_stream->future != NULL)
future = vid_stream->future->Cr;
}
/* Otherwise, block is Cb block... */
else {
/* Set dest to Cb plane of current pict image. */
dest = vid_stream->current->Cb;
/*
* If future frame exists, set future to Cb plane of future frame.
*/
if (vid_stream->future != NULL)
future = vid_stream->future->Cb;
}
}
/* For each pixel in block do... */
index = dest + (row * row_size) + col;
rindex1 = future + (row + down_back) * row_size + col + right_back;
blockvals = &(vid_stream->block.dct_recon[0][0]);
if ((!right_half_back) && (!down_half_back)) {
unsigned char *cm = cropTbl + MAX_NEG_CROP;
if (!zflag)
for (rr = 0; rr < 4; rr++) {
index[0] = cm[(int) rindex1[0] + (int) blockvals[0]];
index[1] = cm[(int) rindex1[1] + (int) blockvals[1]];
index[2] = cm[(int) rindex1[2] + (int) blockvals[2]];
index[3] = cm[(int) rindex1[3] + (int) blockvals[3]];
index[4] = cm[(int) rindex1[4] + (int) blockvals[4]];
index[5] = cm[(int) rindex1[5] + (int) blockvals[5]];
index[6] = cm[(int) rindex1[6] + (int) blockvals[6]];
index[7] = cm[(int) rindex1[7] + (int) blockvals[7]];
index += row_size;
rindex1 += row_size;
index[0] = cm[(int) rindex1[0] + (int) blockvals[8]];
index[1] = cm[(int) rindex1[1] + (int) blockvals[9]];
index[2] = cm[(int) rindex1[2] + (int) blockvals[10]];
index[3] = cm[(int) rindex1[3] + (int) blockvals[11]];
index[4] = cm[(int) rindex1[4] + (int) blockvals[12]];
index[5] = cm[(int) rindex1[5] + (int) blockvals[13]];
index[6] = cm[(int) rindex1[6] + (int) blockvals[14]];
index[7] = cm[(int) rindex1[7] + (int) blockvals[15]];
blockvals += 16;
index += row_size;
rindex1 += row_size;
}
else {
if (right_back & 0x1) {
/* No alignment, use bye copy */
for (rr = 0; rr < 4; rr++) {
index[0] = rindex1[0];
index[1] = rindex1[1];
index[2] = rindex1[2];
index[3] = rindex1[3];
index[4] = rindex1[4];
index[5] = rindex1[5];
index[6] = rindex1[6];
index[7] = rindex1[7];
index += row_size;
rindex1 += row_size;
index[0] = rindex1[0];
index[1] = rindex1[1];
index[2] = rindex1[2];
index[3] = rindex1[3];
index[4] = rindex1[4];
index[5] = rindex1[5];
index[6] = rindex1[6];
index[7] = rindex1[7];
index += row_size;
rindex1 += row_size;
}
} else if (right_back & 0x2) {
/* Half-word bit aligned, use 16 bit copy */
short *src = (short *)rindex1;
short *dest = (short *)index;
row_size >>= 1;
for (rr = 0; rr < 4; rr++) {
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest += row_size;
src += row_size;
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest += row_size;
src += row_size;
}
} else {
/* Word aligned, use 32 bit copy */
int *src = (int *)rindex1;
int *dest = (int *)index;
row_size >>= 2;
for (rr = 0; rr < 4; rr++) {
dest[0] = src[0];
dest[1] = src[1];
dest += row_size;
src += row_size;
dest[0] = src[0];
dest[1] = src[1];
dest += row_size;
src += row_size;
}
}
}
} else {
unsigned char *cm = cropTbl + MAX_NEG_CROP;
rindex2 = rindex1 + right_half_back + (down_half_back * row_size);
if (!zflag)
for (rr = 0; rr < 4; rr++) {
index[0] = cm[((int) (rindex1[0] + rindex2[0]) >> 1) + blockvals[0]];
index[1] = cm[((int) (rindex1[1] + rindex2[1]) >> 1) + blockvals[1]];
index[2] = cm[((int) (rindex1[2] + rindex2[2]) >> 1) + blockvals[2]];
index[3] = cm[((int) (rindex1[3] + rindex2[3]) >> 1) + blockvals[3]];
index[4] = cm[((int) (rindex1[4] + rindex2[4]) >> 1) + blockvals[4]];
index[5] = cm[((int) (rindex1[5] + rindex2[5]) >> 1) + blockvals[5]];
index[6] = cm[((int) (rindex1[6] + rindex2[6]) >> 1) + blockvals[6]];
index[7] = cm[((int) (rindex1[7] + rindex2[7]) >> 1) + blockvals[7]];
index += row_size;
rindex1 += row_size;
rindex2 += row_size;
index[0] = cm[((int) (rindex1[0] + rindex2[0]) >> 1) + blockvals[8]];
index[1] = cm[((int) (rindex1[1] + rindex2[1]) >> 1) + blockvals[9]];
index[2] = cm[((int) (rindex1[2] + rindex2[2]) >> 1) + blockvals[10]];
index[3] = cm[((int) (rindex1[3] + rindex2[3]) >> 1) + blockvals[11]];
index[4] = cm[((int) (rindex1[4] + rindex2[4]) >> 1) + blockvals[12]];
index[5] = cm[((int) (rindex1[5] + rindex2[5]) >> 1) + blockvals[13]];
index[6] = cm[((int) (rindex1[6] + rindex2[6]) >> 1) + blockvals[14]];
index[7] = cm[((int) (rindex1[7] + rindex2[7]) >> 1) + blockvals[15]];
blockvals += 16;
index += row_size;
rindex1 += row_size;
rindex2 += row_size;
}
else
for (rr = 0; rr < 4; rr++) {
index[0] = (int) (rindex1[0] + rindex2[0]) >> 1;
index[1] = (int) (rindex1[1] + rindex2[1]) >> 1;
index[2] = (int) (rindex1[2] + rindex2[2]) >> 1;
index[3] = (int) (rindex1[3] + rindex2[3]) >> 1;
index[4] = (int) (rindex1[4] + rindex2[4]) >> 1;
index[5] = (int) (rindex1[5] + rindex2[5]) >> 1;
index[6] = (int) (rindex1[6] + rindex2[6]) >> 1;
index[7] = (int) (rindex1[7] + rindex2[7]) >> 1;
index += row_size;
rindex1 += row_size;
rindex2 += row_size;
index[0] = (int) (rindex1[0] + rindex2[0]) >> 1;
index[1] = (int) (rindex1[1] + rindex2[1]) >> 1;
index[2] = (int) (rindex1[2] + rindex2[2]) >> 1;
index[3] = (int) (rindex1[3] + rindex2[3]) >> 1;
index[4] = (int) (rindex1[4] + rindex2[4]) >> 1;
index[5] = (int) (rindex1[5] + rindex2[5]) >> 1;
index[6] = (int) (rindex1[6] + rindex2[6]) >> 1;
index[7] = (int) (rindex1[7] + rindex2[7]) >> 1;
index += row_size;
rindex1 += row_size;
rindex2 += row_size;
}
}
}
/*
*--------------------------------------------------------------
*
* ReconBiMBlock --
*
* Reconstructs bidirectionally predicted macroblocks.
*
* Results:
* None.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
static void
ReconBiMBlock(vid_stream, bnum, recon_right_for, recon_down_for,
recon_right_back, recon_down_back, zflag)
VidStream *vid_stream;
int bnum, recon_right_for, recon_down_for, recon_right_back, recon_down_back;
int zflag;
{
int mb_row, mb_col, row, col, row_size, rr;
unsigned char *dest, *past, *future;
int right_for, down_for, right_half_for, down_half_for;
int right_back, down_back, right_half_back, down_half_back;
unsigned char *index, *rindex1, *bindex1;
short int *blockvals;
int forw_row_start, back_row_start, forw_col_start, back_col_start;
/* Calculate macroblock row and column from address. */
mb_row = vid_stream->mblock.mb_address / vid_stream->mb_width;
mb_col = vid_stream->mblock.mb_address % vid_stream->mb_width;
/* If block is luminance block... */
if (bnum < 4) {
/*
* Calculate right_for, down_for, right_half_for, down_half_for,
* right_back, down_bakc, right_half_back, and down_half_back, motion
* vectors.
*/
right_for = recon_right_for >> 1;
down_for = recon_down_for >> 1;
right_half_for = recon_right_for & 0x1;
down_half_for = recon_down_for & 0x1;
right_back = recon_right_back >> 1;
down_back = recon_down_back >> 1;
right_half_back = recon_right_back & 0x1;
down_half_back = recon_down_back & 0x1;
/* Set dest to luminance plane of current pict image. */
dest = vid_stream->current->luminance;
/* If past frame exists, set past to luminance plane of past frame. */
if (vid_stream->past != NULL)
past = vid_stream->past->luminance;
/*
* If future frame exists, set future to luminance plane of future frame.
*/
if (vid_stream->future != NULL)
future = vid_stream->future->luminance;
/* Establish row size. */
row_size = (vid_stream->mb_width << 4);
/* Calculate row,col of upper left pixel in block. */
row = (mb_row << 4);
col = (mb_col << 4);
if (bnum > 1)
row += 8;
if (bnum & 0x01)
col += 8;
forw_col_start = col + right_for;
forw_row_start = row + down_for;
back_col_start = col + right_back;
back_row_start = row + down_back;
/* Check for illegal pred. blocks. */
if ((forw_col_start > lmaxx) || (forw_col_start < 0) ||
(forw_row_start > lmaxy) || (forw_row_start < 0))
fprintf(stderr,"Illegal luminance forward vector in Bi-reconstruction <%d, %d>\n\
in frame %d, macro block %d, block %d\n",
forw_col_start, forw_row_start,blks.frame,
vid_stream->mblock.mb_address, bnum);
if ((back_col_start > lmaxx) || (back_col_start < 0) ||
(back_row_start > lmaxy) || (back_row_start < 0))
fprintf(stderr,"Illegal luminance backward vector in Bi-reconstruction <%d, %d>\n\
in frame %d, macro block %d, block %d\n",
forw_col_start, forw_row_start,blks.frame,
vid_stream->mblock.mb_address, bnum);
/* Otherwise, block is NOT luminance block, ... */
} else {
/* Construct motion vectors. */
recon_right_for /= 2;
recon_down_for /= 2;
right_for = recon_right_for >> 1;
down_for = recon_down_for >> 1;
right_half_for = recon_right_for & 0x1;
down_half_for = recon_down_for & 0x1;
recon_right_back /= 2;
recon_down_back /= 2;
right_back = recon_right_back >> 1;
down_back = recon_down_back >> 1;
right_half_back = recon_right_back & 0x1;
down_half_back = recon_down_back & 0x1;
/* Establish row size. */
row_size = (vid_stream->mb_width << 3);
/* Calculate row,col of upper left pixel in block. */
row = (mb_row << 3);
col = (mb_col << 3);
forw_col_start = col + right_for;
forw_row_start = row + down_for;
back_col_start = col + right_back;
back_row_start = row + down_back;
/* Check for illegal pred. blocks. */
if ((forw_col_start > cmaxx) || (forw_col_start < 0) ||
(forw_row_start > cmaxy) || (forw_row_start < 0))
fprintf(stderr,"Illegal Cr/Cb forward vector in Bi-reconstruction <%d, %d>\n\
in frame %d, macro block %d, block %d\n",
forw_col_start, forw_row_start,blks.frame,
vid_stream->mblock.mb_address, bnum);
if ((back_col_start > cmaxx) || (back_col_start < 0) ||
(back_row_start > cmaxy) || (back_row_start < 0))
fprintf(stderr,"Illegal Cr/Cb backward vector in Bi-reconstruction <%d, %d>\n\
in frame %d, macro block %d, block %d\n",
forw_col_start, forw_row_start,blks.frame,
vid_stream->mblock.mb_address, bnum);
/* If block is Cr block... */
if (bnum == 4) {
/* Set dest to Cr plane of current pict image. */
dest = vid_stream->current->Cr;
/* If past frame exists, set past to Cr plane of past image. */
if (vid_stream->past != NULL)
past = vid_stream->past->Cr;
/*
* If future frame exists, set future to Cr plane of future image.
*/
if (vid_stream->future != NULL)
future = vid_stream->future->Cr;
}
/* Otherwise, block is Cb block... */
else {
/* Set dest to Cb plane of current pict image. */
dest = vid_stream->current->Cb;
/* If past frame exists, set past to Cb plane of past frame. */
if (vid_stream->past != NULL)
past = vid_stream->past->Cb;
/*
* If future frame exists, set future to Cb plane of future frame.
*/
if (vid_stream->future != NULL)
future = vid_stream->future->Cb;
}
}
/* For each pixel in block... */
index = dest + (row * row_size) + col;
rindex1 = past + forw_row_start * row_size + forw_col_start;
bindex1 = future + back_row_start * row_size + back_col_start;
blockvals = (short int *) &(vid_stream->block.dct_recon[0][0]);
{
unsigned char *cm = cropTbl + MAX_NEG_CROP;
if (!zflag)
for (rr = 0; rr < 4; rr++) {
index[0] = cm[((int) (rindex1[0] + bindex1[0]) >> 1) + blockvals[0]];
index[1] = cm[((int) (rindex1[1] + bindex1[1]) >> 1) + blockvals[1]];
index[2] = cm[((int) (rindex1[2] + bindex1[2]) >> 1) + blockvals[2]];
index[3] = cm[((int) (rindex1[3] + bindex1[3]) >> 1) + blockvals[3]];
index[4] = cm[((int) (rindex1[4] + bindex1[4]) >> 1) + blockvals[4]];
index[5] = cm[((int) (rindex1[5] + bindex1[5]) >> 1) + blockvals[5]];
index[6] = cm[((int) (rindex1[6] + bindex1[6]) >> 1) + blockvals[6]];
index[7] = cm[((int) (rindex1[7] + bindex1[7]) >> 1) + blockvals[7]];
index += row_size;
rindex1 += row_size;
bindex1 += row_size;
index[0] = cm[((int) (rindex1[0] + bindex1[0]) >> 1) + blockvals[8]];
index[1] = cm[((int) (rindex1[1] + bindex1[1]) >> 1) + blockvals[9]];
index[2] = cm[((int) (rindex1[2] + bindex1[2]) >> 1) + blockvals[10]];
index[3] = cm[((int) (rindex1[3] + bindex1[3]) >> 1) + blockvals[11]];
index[4] = cm[((int) (rindex1[4] + bindex1[4]) >> 1) + blockvals[12]];
index[5] = cm[((int) (rindex1[5] + bindex1[5]) >> 1) + blockvals[13]];
index[6] = cm[((int) (rindex1[6] + bindex1[6]) >> 1) + blockvals[14]];
index[7] = cm[((int) (rindex1[7] + bindex1[7]) >> 1) + blockvals[15]];
blockvals += 16;
index += row_size;
rindex1 += row_size;
bindex1 += row_size;
}
else
for (rr = 0; rr < 4; rr++) {
index[0] = (int) (rindex1[0] + bindex1[0]) >> 1;
index[1] = (int) (rindex1[1] + bindex1[1]) >> 1;
index[2] = (int) (rindex1[2] + bindex1[2]) >> 1;
index[3] = (int) (rindex1[3] + bindex1[3]) >> 1;
index[4] = (int) (rindex1[4] + bindex1[4]) >> 1;
index[5] = (int) (rindex1[5] + bindex1[5]) >> 1;
index[6] = (int) (rindex1[6] + bindex1[6]) >> 1;
index[7] = (int) (rindex1[7] + bindex1[7]) >> 1;
index += row_size;
rindex1 += row_size;
bindex1 += row_size;
index[0] = (int) (rindex1[0] + bindex1[0]) >> 1;
index[1] = (int) (rindex1[1] + bindex1[1]) >> 1;
index[2] = (int) (rindex1[2] + bindex1[2]) >> 1;
index[3] = (int) (rindex1[3] + bindex1[3]) >> 1;
index[4] = (int) (rindex1[4] + bindex1[4]) >> 1;
index[5] = (int) (rindex1[5] + bindex1[5]) >> 1;
index[6] = (int) (rindex1[6] + bindex1[6]) >> 1;
index[7] = (int) (rindex1[7] + bindex1[7]) >> 1;
index += row_size;
rindex1 += row_size;
bindex1 += row_size;
}
}
}
/*
*--------------------------------------------------------------
*
* ProcessSkippedPFrameMBlocks --
*
* Processes skipped macroblocks in P frames.
*
* Results:
* Calculates pixel values for luminance, Cr, and Cb planes
* in current pict image for skipped macroblocks.
*
* Side effects:
* Pixel values in pict image changed.
*
*--------------------------------------------------------------
*/
static void
ProcessSkippedPFrameMBlocks(vid_stream)
VidStream *vid_stream;
{
int row_size, half_row, mb_row, mb_col, row, col, rr;
int addr, row_incr, half_row_incr, crow, ccol;
int *dest, *src, *dest1, *src1;
/* Calculate row sizes for luminance and Cr/Cb macroblock areas. */
row_size = vid_stream->mb_width << 4;
half_row = (row_size >> 1);
row_incr = row_size >> 2;
half_row_incr = half_row >> 2;
/* For each skipped macroblock, do... */
for (addr = vid_stream->mblock.past_mb_addr + 1;
addr < vid_stream->mblock.mb_address; addr++) {
if (opts&COLLECTING&BLOCK_INFO) {
blks.block++;
fprintf(block_fp,"block %d %c %d 0 skip\n",
blks.block-1,"0IPBD"[vid_stream->picture.code_type],
blks.qs);
}
/* Calculate macroblock row and col. */
mb_row = addr / vid_stream->mb_width;
mb_col = addr % vid_stream->mb_width;
/* Calculate upper left pixel row,col for luminance plane. */
row = mb_row << 4;
col = mb_col << 4;
/* For each row in macroblock luminance plane... */
dest = (int *)(vid_stream->current->luminance + (row * row_size) + col);
src = (int *)(vid_stream->future->luminance + (row * row_size) + col);
for (rr = 0; rr < 8; rr++) {
/* Copy pixel values from last I or P picture. */
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest += row_incr;
src += row_incr;
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest += row_incr;
src += row_incr;
}
/*
* Divide row,col to get upper left pixel of macroblock in Cr and Cb
* planes.
*/
crow = row >> 1;
ccol = col >> 1;
/* For each row in Cr, and Cb planes... */
dest = (int *)(vid_stream->current->Cr + (crow * half_row) + ccol);
src = (int *)(vid_stream->future->Cr + (crow * half_row) + ccol);
dest1 = (int *)(vid_stream->current->Cb + (crow * half_row) + ccol);
src1 = (int *)(vid_stream->future->Cb + (crow * half_row) + ccol);
for (rr = 0; rr < 4; rr++) {
/* Copy pixel values from last I or P picture. */
dest[0] = src[0];
dest[1] = src[1];
dest1[0] = src1[0];
dest1[1] = src1[1];
dest += half_row_incr;
src += half_row_incr;
dest1 += half_row_incr;
src1 += half_row_incr;
dest[0] = src[0];
dest[1] = src[1];
dest1[0] = src1[0];
dest1[1] = src1[1];
dest += half_row_incr;
src += half_row_incr;
dest1 += half_row_incr;
src1 += half_row_incr;
}
if (ditherType == MBORDERED_DITHER) {
/*
MBOrderedDitherDisplayCopy(vid_stream, addr,
1, 0, 0, 0, 0, 0,
vid_stream->future->display,
(unsigned char *) NULL);
*/
ditherFlags[addr] = 0;
}
}
vid_stream->mblock.recon_right_for_prev = 0;
vid_stream->mblock.recon_down_for_prev = 0;
}
/*
*--------------------------------------------------------------
*
* ProcessSkippedBFrameMBlocks --
*
* Processes skipped macroblocks in B frames.
*
* Results:
* Calculates pixel values for luminance, Cr, and Cb planes
* in current pict image for skipped macroblocks.
*
* Side effects:
* Pixel values in pict image changed.
*
*--------------------------------------------------------------
*/
static void
ProcessSkippedBFrameMBlocks(vid_stream)
VidStream *vid_stream;
{
int row_size, half_row, mb_row, mb_col, row, col, rr;
int right_half_for, down_half_for, c_right_half_for, c_down_half_for;
int right_half_back, down_half_back, c_right_half_back, c_down_half_back;
int addr, right_for, down_for;
int recon_right_for, recon_down_for;
int recon_right_back, recon_down_back;
int right_back, down_back;
int c_right_for, c_down_for;
int c_right_back, c_down_back;
unsigned char forw_lum[256];
unsigned char forw_cr[64], forw_cb[64];
unsigned char back_lum[256], back_cr[64], back_cb[64];
int row_incr, half_row_incr;
int ccol, crow;
/* Calculate row sizes for luminance and Cr/Cb macroblock areas. */
row_size = vid_stream->mb_width << 4;
half_row = (row_size >> 1);
row_incr = row_size >> 2;
half_row_incr = half_row >> 2;
/* Establish motion vector codes based on full pixel flag. */
if (vid_stream->picture.full_pel_forw_vector) {
recon_right_for = vid_stream->mblock.recon_right_for_prev << 1;
recon_down_for = vid_stream->mblock.recon_down_for_prev << 1;
} else {
recon_right_for = vid_stream->mblock.recon_right_for_prev;
recon_down_for = vid_stream->mblock.recon_down_for_prev;
}
if (vid_stream->picture.full_pel_back_vector) {
recon_right_back = vid_stream->mblock.recon_right_back_prev << 1;
recon_down_back = vid_stream->mblock.recon_down_back_prev << 1;
} else {
recon_right_back = vid_stream->mblock.recon_right_back_prev;
recon_down_back = vid_stream->mblock.recon_down_back_prev;
}
/* Calculate motion vectors. */
if (vid_stream->mblock.bpict_past_forw) {
right_for = recon_right_for >> 1;
down_for = recon_down_for >> 1;
right_half_for = recon_right_for & 0x1;
down_half_for = recon_down_for & 0x1;
recon_right_for /= 2;
recon_down_for /= 2;
c_right_for = recon_right_for >> 1;
c_down_for = recon_down_for >> 1;
c_right_half_for = recon_right_for & 0x1;
c_down_half_for = recon_down_for & 0x1;
}
if (vid_stream->mblock.bpict_past_back) {
right_back = recon_right_back >> 1;
down_back = recon_down_back >> 1;
right_half_back = recon_right_back & 0x1;
down_half_back = recon_down_back & 0x1;
recon_right_back /= 2;
recon_down_back /= 2;
c_right_back = recon_right_back >> 1;
c_down_back = recon_down_back >> 1;
c_right_half_back = recon_right_back & 0x1;
c_down_half_back = recon_down_back & 0x1;
}
/* For each skipped macroblock, do... */
for (addr = vid_stream->mblock.past_mb_addr + 1;
addr < vid_stream->mblock.mb_address; addr++) {
if (opts&COLLECTING&BLOCK_INFO) {
blks.block++;
fprintf(block_fp,"block %d %c %d 0 skip\n",
blks.block-1,"0IPBD"[vid_stream->picture.code_type],
blks.qs);
}
/* Calculate macroblock row and col. */
mb_row = addr / vid_stream->mb_width;
mb_col = addr % vid_stream->mb_width;
/* Calculate upper left pixel row,col for luminance plane. */
row = mb_row << 4;
col = mb_col << 4;
crow = row / 2;
ccol = col / 2;
/* If forward predicted, calculate prediction values. */
if (vid_stream->mblock.bpict_past_forw) {
ReconSkippedBlock(vid_stream->past->luminance, forw_lum,
row, col, row_size, right_for, down_for,
right_half_for, down_half_for, 16);
ReconSkippedBlock(vid_stream->past->Cr, forw_cr, crow,
ccol, half_row,
c_right_for, c_down_for, c_right_half_for, c_down_half_for, 8);
ReconSkippedBlock(vid_stream->past->Cb, forw_cb, crow,
ccol, half_row,
c_right_for, c_down_for, c_right_half_for, c_down_half_for, 8);
}
/* If back predicted, calculate prediction values. */
if (vid_stream->mblock.bpict_past_back) {
ReconSkippedBlock(vid_stream->future->luminance, back_lum,
row, col, row_size, right_back, down_back,
right_half_back, down_half_back, 16);
ReconSkippedBlock(vid_stream->future->Cr, back_cr, crow,
ccol, half_row,
c_right_back, c_down_back,
c_right_half_back, c_down_half_back, 8);
ReconSkippedBlock(vid_stream->future->Cb, back_cb, crow,
ccol, half_row,
c_right_back, c_down_back,
c_right_half_back, c_down_half_back, 8);
}
if (vid_stream->mblock.bpict_past_forw &&
!vid_stream->mblock.bpict_past_back) {
int *dest, *dest1;
int *src, *src1;
dest = (int *)(vid_stream->current->luminance + (row * row_size) + col);
src = (int *)forw_lum;
for (rr = 0; rr < 16; rr++) {
/* memcpy(dest, forw_lum+(rr<<4), 16); */
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest += row_incr;
src += 4;
}
dest = (int *)(vid_stream->current->Cr + (crow * half_row) + ccol);
dest1 = (int *)(vid_stream->current->Cb + (crow * half_row) + ccol);
src = (int *)forw_cr;
src1 = (int *)forw_cb;
for (rr = 0; rr < 8; rr++) {
/*
* memcpy(dest, forw_cr+(rr<<3), 8); memcpy(dest1, forw_cb+(rr<<3),
* 8);
*/
dest[0] = src[0];
dest[1] = src[1];
dest1[0] = src1[0];
dest1[1] = src1[1];
dest += half_row_incr;
dest1 += half_row_incr;
src += 2;
src1 += 2;
}
} else if (vid_stream->mblock.bpict_past_back &&
!vid_stream->mblock.bpict_past_forw) {
int *src, *src1;
int *dest, *dest1;
dest = (int *)(vid_stream->current->luminance + (row * row_size) + col);
src = (int *)back_lum;
for (rr = 0; rr < 16; rr++) {
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = src[3];
dest += row_incr;
src += 4;
}
dest = (int *)(vid_stream->current->Cr + (crow * half_row) + ccol);
dest1 = (int *)(vid_stream->current->Cb + (crow * half_row) + ccol);
src = (int *)back_cr;
src1 = (int *)back_cb;
for (rr = 0; rr < 8; rr++) {
/*
* memcpy(dest, back_cr+(rr<<3), 8); memcpy(dest1, back_cb+(rr<<3),
* 8);
*/
dest[0] = src[0];
dest[1] = src[1];
dest1[0] = src1[0];
dest1[1] = src1[1];
dest += half_row_incr;
dest1 += half_row_incr;
src += 2;
src1 += 2;
}
} else {
unsigned char *src1, *src2, *src1a, *src2a;
unsigned char *dest, *dest1;
dest = vid_stream->current->luminance + (row * row_size) + col;
src1 = forw_lum;
src2 = back_lum;
for (rr = 0; rr < 16; rr++) {
dest[0] = (int) (src1[0] + src2[0]) >> 1;
dest[1] = (int) (src1[1] + src2[1]) >> 1;
dest[2] = (int) (src1[2] + src2[2]) >> 1;
dest[3] = (int) (src1[3] + src2[3]) >> 1;
dest[4] = (int) (src1[4] + src2[4]) >> 1;
dest[5] = (int) (src1[5] + src2[5]) >> 1;
dest[6] = (int) (src1[6] + src2[6]) >> 1;
dest[7] = (int) (src1[7] + src2[7]) >> 1;
dest[8] = (int) (src1[8] + src2[8]) >> 1;
dest[9] = (int) (src1[9] + src2[9]) >> 1;
dest[10] = (int) (src1[10] + src2[10]) >> 1;
dest[11] = (int) (src1[11] + src2[11]) >> 1;
dest[12] = (int) (src1[12] + src2[12]) >> 1;
dest[13] = (int) (src1[13] + src2[13]) >> 1;
dest[14] = (int) (src1[14] + src2[14]) >> 1;
dest[15] = (int) (src1[15] + src2[15]) >> 1;
dest += row_size;
src1 += 16;
src2 += 16;
}
dest = vid_stream->current->Cr + (crow * half_row) + ccol;
dest1 = vid_stream->current->Cb + (crow * half_row) + ccol;
src1 = forw_cr;
src2 = back_cr;
src1a = forw_cb;
src2a = back_cb;
for (rr = 0; rr < 8; rr++) {
dest[0] = (int) (src1[0] + src2[0]) >> 1;
dest[1] = (int) (src1[1] + src2[1]) >> 1;
dest[2] = (int) (src1[2] + src2[2]) >> 1;
dest[3] = (int) (src1[3] + src2[3]) >> 1;
dest[4] = (int) (src1[4] + src2[4]) >> 1;
dest[5] = (int) (src1[5] + src2[5]) >> 1;
dest[6] = (int) (src1[6] + src2[6]) >> 1;
dest[7] = (int) (src1[7] + src2[7]) >> 1;
dest += half_row;
src1 += 8;
src2 += 8;
dest1[0] = (int) (src1a[0] + src2a[0]) >> 1;
dest1[1] = (int) (src1a[1] + src2a[1]) >> 1;
dest1[2] = (int) (src1a[2] + src2a[2]) >> 1;
dest1[3] = (int) (src1a[3] + src2a[3]) >> 1;
dest1[4] = (int) (src1a[4] + src2a[4]) >> 1;
dest1[5] = (int) (src1a[5] + src2a[5]) >> 1;
dest1[6] = (int) (src1a[6] + src2a[6]) >> 1;
dest1[7] = (int) (src1a[7] + src2a[7]) >> 1;
dest1 += half_row;
src1a += 8;
src2a += 8;
}
}
if (ditherType == MBORDERED_DITHER) {
ditherFlags[addr] = 1;
}
}
}
/*
*--------------------------------------------------------------
*
* ReconSkippedBlock --
*
* Reconstructs predictive block for skipped macroblocks
* in B Frames.
*
* Results:
* No return values.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
static void
ReconSkippedBlock(source, dest, row, col, row_size,
right, down, right_half, down_half, width)
unsigned char *source;
unsigned char *dest;
int row, col, row_size, right, down, right_half, down_half, width;
{
int rr;
unsigned char *source2;
source += ((row + down) * row_size) + col + right;
if (width == 16) {
if ((!right_half) && (!down_half)) {
if (right & 0x1) {
/* No alignment, use bye copy */
for (rr = 0; rr < 16; rr++) {
dest[0] = source[0];
dest[1] = source[1];
dest[2] = source[2];
dest[3] = source[3];
dest[4] = source[4];
dest[5] = source[5];
dest[6] = source[6];
dest[7] = source[7];
dest[8] = source[8];
dest[9] = source[9];
dest[10] = source[10];
dest[11] = source[11];
dest[12] = source[12];
dest[13] = source[13];
dest[14] = source[14];
dest[15] = source[15];
dest += 16;
source += row_size;
}
} else if (right & 0x2) {
/* Half-word bit aligned, use 16 bit copy */
short *src = (short *)source;
short *d = (short *)dest;
row_size >>= 1;
for (rr = 0; rr < 16; rr++) {
d[0] = src[0];
d[1] = src[1];
d[2] = src[2];
d[3] = src[3];
d[4] = src[4];
d[5] = src[5];
d[6] = src[6];
d[7] = src[7];
d += 8;
src += row_size;
}
} else {
/* Word aligned, use 32 bit copy */
int *src = (int *)source;
int *d = (int *)dest;
row_size >>= 2;
for (rr = 0; rr < 16; rr++) {
d[0] = src[0];
d[1] = src[1];
d[2] = src[2];
d[3] = src[3];
d += 4;
src += row_size;
}
}
} else {
source2 = source + right_half + (row_size * down_half);
for (rr = 0; rr < width; rr++) {
dest[0] = (int) (source[0] + source2[0]) >> 1;
dest[1] = (int) (source[1] + source2[1]) >> 1;
dest[2] = (int) (source[2] + source2[2]) >> 1;
dest[3] = (int) (source[3] + source2[3]) >> 1;
dest[4] = (int) (source[4] + source2[4]) >> 1;
dest[5] = (int) (source[5] + source2[5]) >> 1;
dest[6] = (int) (source[6] + source2[6]) >> 1;
dest[7] = (int) (source[7] + source2[7]) >> 1;
dest[8] = (int) (source[8] + source2[8]) >> 1;
dest[9] = (int) (source[9] + source2[9]) >> 1;
dest[10] = (int) (source[10] + source2[10]) >> 1;
dest[11] = (int) (source[11] + source2[11]) >> 1;
dest[12] = (int) (source[12] + source2[12]) >> 1;
dest[13] = (int) (source[13] + source2[13]) >> 1;
dest[14] = (int) (source[14] + source2[14]) >> 1;
dest[15] = (int) (source[15] + source2[15]) >> 1;
dest += width;
source += row_size;
source2 += row_size;
}
}
} else { /* (width == 8) */
assert(width == 8);
if ((!right_half) && (!down_half)) {
if (right & 0x1) {
for (rr = 0; rr < width; rr++) {
dest[0] = source[0];
dest[1] = source[1];
dest[2] = source[2];
dest[3] = source[3];
dest[4] = source[4];
dest[5] = source[5];
dest[6] = source[6];
dest[7] = source[7];
dest += 8;
source += row_size;
}
} else if (right & 0x02) {
short *d = (short *)dest;
short *src = (short *)source;
row_size >>= 1;
for (rr = 0; rr < width; rr++) {
d[0] = src[0];
d[1] = src[1];
d[2] = src[2];
d[3] = src[3];
d += 4;
src += row_size;
}
} else {
int *d = (int *)dest;
int *src = (int *)source;
row_size >>= 2;
for (rr = 0; rr < width; rr++) {
d[0] = src[0];
d[1] = src[1];
d += 2;
src += row_size;
}
}
} else {
source2 = source + right_half + (row_size * down_half);
for (rr = 0; rr < width; rr++) {
dest[0] = (int) (source[0] + source2[0]) >> 1;
dest[1] = (int) (source[1] + source2[1]) >> 1;
dest[2] = (int) (source[2] + source2[2]) >> 1;
dest[3] = (int) (source[3] + source2[3]) >> 1;
dest[4] = (int) (source[4] + source2[4]) >> 1;
dest[5] = (int) (source[5] + source2[5]) >> 1;
dest[6] = (int) (source[6] + source2[6]) >> 1;
dest[7] = (int) (source[7] + source2[7]) >> 1;
dest += width;
source += row_size;
source2 += row_size;
}
}
}
}
/*
*--------------------------------------------------------------
*
* DoPictureDisplay --
*
* Converts image from Lum, Cr, Cb to colormap space. Puts
* image in lum plane. Updates past and future frame
* pointers. Dithers image. Sends to display mechanism.
*
* Results:
* Pict image structure locked if displaying or if frame
* is needed as past or future reference.
*
* Side effects:
* Lum plane pummelled.
*
*--------------------------------------------------------------
*/
static void
DoPictureDisplay(vid_stream)
VidStream *vid_stream;
{
/* Update past and future references if needed. */
if ((vid_stream->picture.code_type == I_TYPE) ||
(vid_stream->picture.code_type == P_TYPE)) {
if (vid_stream->future == NULL) {
vid_stream->future = vid_stream->current;
vid_stream->future->locked |= FUTURE_LOCK;
} else {
if (vid_stream->past != NULL) {
vid_stream->past->locked &= ~PAST_LOCK;
}
vid_stream->past = vid_stream->future;
vid_stream->past->locked &= ~FUTURE_LOCK;
vid_stream->past->locked |= PAST_LOCK;
vid_stream->future = vid_stream->current;
vid_stream->future->locked |= FUTURE_LOCK;
vid_stream->current = vid_stream->past;
/* OLD: ShowOutputVal(vid_stream); */
}
} else {
/* OLD ShowOutputVal(vid_stream); */
}
}